Индекс периферического сосудистого сопротивления
Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением:
Как следует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.
Прямых бескровных методов измерения общего периферического сопротивления не разработано, и его величина определяется из уравнения Пуазейля для гидродинамики:
где R — гидравлическое сопротивление, l — длина сосуда, v — вязкость крови, r — радиус сосудов.
Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обычно неизвестными, Франк, используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:
где Р1—Р2 — разность давлений в начале и в конце участка сосудистой системы, Q — величина кровотока через этот участок, 1332— коэффициент перевода единиц сопротивления в систему CGS.
Уравнение Франка широко используется на практике для определения сопротивления сосудов, хотя оно не всегда отражает истинные физиологические взаимоотношения между объемным кровотоком, АД и сопротивлением сосудов кровотоку у теплокровных. Эти три параметра системы действительно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время их изменения могут быть в разной мере взаимозависимыми. Так, в конкретных случаях уровень САД может определяться преимущественно величиной ОПСС или в основном СВ.
Рис. 9.3. Более выраженная величина повышения сопротивления сосудов бассейна грудной аорты по сравнению с его изменениями в бассейне плечеголовной артерии при прессорном рефлексе.
В обычных физиологических условиях ОПСС составляет от 1200 до 1700 дин • с ¦ см , при гипертонической болезни эта величина может возрастать в два раза против нормы и быть равной 2200—3000 дин • с • см-5.
Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистых отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис. 9.3 показан пример более выраженной степени повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плечеголовной артерии. Поэтому прирост кровотока в плечеголовной артерии будет больше, чем в грудной аорте. На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.
В масштабе организма, от тонуса артериол зависит общее периферическое сопротивление, которое, наряду с ударным объёмом сердца определяет величину артериального давления.
Кроме того, тонус артериол может изменяться локально, в пределах данного органа или ткани. Локальное изменение тонуса артериол, не оказывая заметного влияния на общее периферическое сопротивление, будет определять величину кровотока в данном органе. Так, тонус артериол заметно снижается в работающих мышцах, что приводит к увеличению их кровоснабжения.
Регуляция тонуса артериол
Поскольку изменение тонуса артериол в масштабе целостного организма и в масштабе отдельных тканей имеет совершенно различное физиологическое значение, существуют как локальные, так и центральные механизмы его регуляции.
Локальная регуляция сосудистого тонуса
В отсутствие всяких регуляторных воздействий изолированная артериола, лишенная эндотелия, сохраняет некоторый тонус, зависящий от самих гладких мышц. Он называется базальным тонусом сосуда. На него могут оказывать влияние такие факторы среды, как pH и концентрация CO 2 (снижение первой и повышение второй приводят к уменьшению тонуса). Эта реакция оказывается физиологически целесообразной, так как следующее за локальным снижением тонуса артериол увеличение местного кровотока, собственно, и приведет к восстановлению тканевого гомеостаза.
Далее, эндотелий сосудов постоянно синтезирует как сосудосуживающие (прессорные) (эндотелин), так и сосудорасширяющие (депрессорные) факторы (оксид азота NO и простациклин).
При повреждении сосуда тромбоциты выделяют мощный сосудосуживающий фактор тромбоксан A2, что приводит к спазму поврежденного сосуда и временной остановке кровотечения.
Напротив, медиаторы воспаления, такие, как простагландин E2 и гистамин вызывают снижение тонуса артериол. Изменение метаболического состояния ткани может менять баланс прессорных и депрессорных факторов. Так, снижение pH и увеличение концентрации CO2 смещает баланс в пользу депрессорных влияний.
Системные гормоны, регулирующие сосудистый тонус
Гормон нейрогипофиза вазопрессин, как явствует из его названия (лат. vas — сосуд, pressio — давление) оказывает некоторое, хотя и скромное, сосудосуживающее действие. Гораздо более мощным прессорным гормоном является ангиотензин (греч. ангио — сосуд, тензио — давление) — полипептид, который формируется в плазме крови при снижении давления в артериях почек. Весьма интересным действием на сосуды обладает гормон мозгового вещества надпочечников адреналин, который продуцируется при стрессе и метаболически обеспечивает реакцию «борьбы или бегства». В гладких мышцах артериол большинства органов имеются α-адренорецепторы, вызывающие сужение сосудов, однако в артериолах скелетных мышц и головного мозга преобладают β
2-адренорецепторы, которые вызывают снижение сосудистого тонуса. В результате, во-первых, возрастает общее сосудистое сопротивление и, следовательно, артериальное давление, а во-вторых, сопротивление сосудов скелетных мышц и мозга снижается, что приводит к перераспределению кровотока в эти органы и резкое увеличение их кровоснабжения.
Сосудосуживающие и сосудорасширяющие нервы
Все, или почти все, артериолы организма получают симпатическую иннервацию. Симпатические нервы в качестве нейромедиатора имеют катехоламины (в большинстве случаев норадреналин) и имеют сосудосуживающее действие. Поскольку аффинность β-адренорецепторов к норадреналину мала, то даже в скелетных мышцах при действии симпатических нервов преобладает прессорный эффект.
Парасимпатические сосудорасширяющие нервы, нейромедиаторами которых являются ацетилхолин и оксид азота, встречаются в организме человека в двух местах: слюнных железах и пещеристых телах. В слюнных железах их действие приводит к увеличению кровотока и усилению фильтрации жидкости из сосудов в интерстиций и далее к обильной секреции слюны, в пещеристых телах снижение тонуса артериол под действием сосудорасширяющих нервов обеспечивает эрекцию.
Участие артериол в патофизиологических процессах
Воспаление и аллергические реакции
Важнейшая функция воспалительной реакции — локализация и лизис чужеродного агента, вызвавшего воспаление. Функции лизиса выполняют клетки, доставляющиеся в очаг воспаления током крови (главным образом, нейтрофилы и лимфоциты. Соответственно, оказывается целесообразным увеличить в очаге воспаления локальный кровоток. Поэтому «медиаторами воспаления» служат вещества, имеющие мощный сосудорасширяющий эффект — гистамин и простагландин E2. Три из пяти классических симптомов воспаления (покраснение, отёк, жар) вызваны именно расширением сосудов. Увеличение притока крови — следовательно, краснота; рост давления в капиллярах и увеличение фильтрации из них жидкости — следовательно, отёк (впрочем, в его формировании участвует и рост проницаемости стенок капилляров), увеличение притока нагретой крови от ядра тела — следовательно, жар (хотя здесь, возможно, не меньшую роль играет увеличение скорости обмена веществ в очаге воспаления).
Однако, гистамин, кроме защитной воспалительной реакции, является главным медиатором аллергий.
Это вещество секретируется тучными клетками, когда сорбированные на их мембранах антитела связываются с антигенами из группы иммуноглобулинов E.
Аллергия на какое-то вещество возникает, когда против него нарабатывается достаточно много таких антител и они массово сорбируются на тучные клетки в масштабах организма. Тогда, при контакте вещества (аллергена) с этими клетками, они секретируют гистамин, что вызывает по месту секреции расширение артериол, с последующими болью, покраснением и отеком. Таким образом, все варианты аллергии, от насморка и крапивницы, до отёка Квинке и анафилактического шока, в значительной мере оказываются связаны с гистамин-зависимым падением тонуса артериол. Разница состоит в том, где и насколько массивно происходит это расширение.
Особенно интересным (и опасным) вариантом аллергии является анафилактический шок. Он возникает, когда аллерген, обычно после внутривенной или внутримышечной инъекции, распространяется по всему телу и вызывает секрецию гистамина и расширение сосудов в масштабах организма. В этом случае максимально наполняются кровью все капилляры, но их общая ёмкость превышает объём циркулирующей крови. В результате, кровь не возвращается из капилляров в вены и предсердия, эффективная работа сердца оказывается невозможной и давление падает до нуля. Реакция эта развивается в течение нескольких минут и ведёт к гибели больного. Наиболее эффективное мероприятие при анафилактическом шоке — внутривенное введение вещества, обладающего мощным сосудосуживающим действием — лучше всего норадреналина.
Сайт о кардио
Периферическое сопротивление сосудов (ОПСС)
Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением:
Используется для расчета величины этого параметра или его изменений. Для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.
Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистыхотделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем.
На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.
Сопротивление, разность давления и поток связаны основным уравнением гидродинамики: Q=AP/R. Так как поток (Q) должен быть идентичен в каждом из последовательно расположенных отделов сосудистой системы, то падение давления, которое происходит на протяжении каждого из этих отделов, является прямым отражением сопротивления, которое существует в данном отделе. Таким образом, существенное падение артериального давления, при прохождении крови через артериолы, указывает, что артериолы обладают значительным сопротивлением кровотоку. Среднее давление незначительно снижается в артериях, так как они обладают незначительным сопротивлением.
Аналогично умеренное падение давления, которое происходит в капиллярах, является отражением того, что капилляры обладают умеренным сопротивлением по сравнению с артериолами.
Поток крови, протекающий через отдельные органы, может изменяться в десять и более раз. Так как среднее артериальное давление является относительно устойчивым показателем деятельности сердечно-сосудистой системы, существенные изменения кровотока органа являются следствием изменения его общего сосудистого сопротивления кровотоку. Последовательно расположённые сосудистые отделы объединены в определенные группы в пределах органа, и общее сосудистое сопротивление органа должно равняться сумме сопротивлений его последовательно соединенных сосудистых отделов.
Так как артериолы обладают значительно большим сосудистым сопротивлением по сравнению с другими отделами сосудистого русла, то общее сосудистое сопротивление любого органа определяется в значительной степени сопротивлением артериол. Сопротивление артериол, конечно, в значительной степени определяется радиусом артериол. Следовательно, кровоток через орган в первую очередь регулируется изменением внутреннего диаметра артериол за счет сокращения или расслабления мышечной стенки артериол.
Когда артериолы органа изменяют свой диаметр, то меняется не только кровоток через орган, но претерпевает изменения и падение артериального давления, происходящее в данном органе.
Сужение артериол вызывает более значительное падение давления в артериолах, что приводит к увеличению артериального давления и одновременному снижению изменений сопротивления артериол на давление в сосудах.
(Функция артериол в какой-то степени напоминает роль дамбы: в результате закрытия ворот дамбы снижается поток и повышается ее уровень в резервуаре позади плотины и снижается уровень после нее).
Напротив, увеличение органного кровотока, вызванное расширением артериол, сопровождается снижением артериального давления и увеличением капиллярного давления. Из-за изменений гидростатического давления в капиллярах сужение артериол ведет к транскапиллярной реабсорбции жидкости, в то время как расширение артериол способствует транскапиллярной фильтрации жидкости.
Определение основных понятий в интенсивной терапии
Основные понятия
Артериальное давление характеризуется показателями систолического и диастолического давления, а также интегральным показателем: среднее артериальное давление. Среднее артериальное давление рассчитывается как сумма одной трети пульсового давления (разницы между систолическим и диастолическим) и диастолического давления.
Среднее артериальное давление само по себе не описывает адекватно функцию сердца. Для этого используются следующие показатели:
Сердечный выброс: объем крови, изгоняемой сердцем за минуту.
Ударный объём: объем крови, изгоняемой сердцем за одно сокращение.
Сердечный выброс равен ударному объёму, умноженному на ЧСС.
Сердечный индекс – это сердечный выброс, с коррекцией на размеры пациента (на площадь поверхности тела). Он точнее отражает функцию сердца.
Преднагрузка
Ударный объём зависит от преднагрузки, постнагрузки и сократимости.
Преднагрузка – это мера напряжения стенки левого желудочка в конце диастолы. Она трудно поддаётся прямому количественному определению.
Непрямыми показателями преднагрузки служат центральное венозное давление (ЦВД), давление заклинивания лёгочной артерии (ДЗЛА) и давление в левом предсердии (ДЛП). Эти показатели называют «давлениями наполнения».
Конечно-диастолический объём левого желудочка (КДОЛЖ) и конечно-диастолическое давление в левом желудочке считаются более точными показателями преднагрузки, однако они редко измеряются в клинической практике. Ориентировочные размеры левого желудочка могут быть получены с помощью трансторакального или (точнее) чреспищеводного УЗИ сердца. Кроме того, конечно-диастолический объём камер сердца высчитывается с помощью некоторых методов исследования центральной гемодинамики (PiCCO).
Постнагрузка
Постнагрузка – это мера напряжения стенки левого желудочка во время систолы.
Она определяется преднагрузкой (которая обусловливает растяжение желудочка) и сопротивлением, которое встречает сердце при сокращении (это сопротивление зависит от общего периферического сопротивления сосудов (ОПСС), податливости сосудов, среднего артериального давления и от градиента в выходном тракте левого желудочка).
ОПСС, которое, как правило, отражает степень периферической вазоконстрикции, часто используется как непрямой показатель постнагрузки. Определяется при инвазивном измерении параметров гемодинамики.
Сократительная способность и комплайнс
Сократимость – это мера силы сокращения миокардиальных волокон при определённых пред- и постнагрузке.
Среднее артериальное давление и сердечный выброс часто используются как непрямые показатели сократимости.
Комплайнс – это мера растяжимости стенки левого желудочка во время диастолы: сильный, гипертрофированный левый желудочек может характеризоваться низким комплайнсом.
Комплайнс трудно количественно измерить в клинических условиях.
Конечно-диастолическое давление в левом желудочке, которое можно измерить во время предоперационной катетеризации сердца или оценить по данным эхоскопии, является непрямым показателем КДДЛЖ.
Важные формулы расчета гемодинамики
Сердечный выброс = УО * ЧСС
Сердечный индекс = СВ/ППТ
Ударный индекс = УО/ППТ
Среднее артериальное давление = ДАД + (САД-ДАД)/3
Общее периферическое сопротивление = ((СрАД-ЦВД)/СВ)*80)
Индекс общего периферического сопротивления = ОПСС/ППТ
Сопротивление лёгочных сосудов = ((ДЛА — ДЗЛК)/СВ)*80)
Индекс сопротивления лёгочных сосудов = ОПСС/ППТ
CВ = сердечный выброс, 4,5-8 л/мин
УО = ударный объем, 60-100 мл
ППТ = площадь поверхности тела, 2- 2,2 м 2
СИ = сердечный индекс, 2,0-4,4 л/мин*м2
ИУО = индекс ударного объема, 33-100 мл
СрАД = Среднее артериальное давление, 70- 100 мм рт.
ДД = Диастолическое давление, 60- 80 мм рт. ст.
САД = Систолическое давление, 100- 150 мм рт. ст.
ОПСС = общее периферическое сопротивление, 800-1 500 дин/с*см 2
ЦВД = центральное венозное давление, 6- 12 мм рт. ст.
ИОПСС = индекс общего периферического сопротивления, 2000-2500 дин/с*см 2
СЛС = сопротивление лёгочных сосудов, СЛС = 100-250 дин/с*см 5
ДЛА = давление в лёгочной артерии, 20- 30 мм рт. ст.
ДЗЛА = давление заклинивания лёгочной артерии, 8- 14 мм рт. ст.
ИСЛС = индекс сопротивления лёгочных сосудов = 225-315 дин/с*см 2
Оксигенация и вентиляция
Оксигенация (содержание кислорода в артериальной крови) описывается такими понятиями, как парциальное давление кислорода в артериальной крови (Pa 02 ) и сатурация (насыщение) гемоглобина артериальной крови кислородом (Sa 02 ).
Вентиляция (движение воздуха в лёгкие и из них) описывается понятием минутный объём вентиляции и оценивается путём измерения парциального давления углекислого газа в артериальной крови (Pa C02 ).
Оксигенация, в принципе, не зависит от минутного объёма вентиляции, если только он не очень низкий.
В послеоперационном периоде основной причиной гипоксии являются ателектазы лёгких. Их следует попытаться устранить до того, как увеличивать концентрацию кислорода во вдыхаемом воздухе( Fi02 ).
Для лечения и профилактики ателектазов применяются положительное давление в конце выдоха (РЕЕР) и постоянное положительное давление в дыхательных путях (СРАР).
Потребление кислорода оценивается косвенно по сатурации гемоглобина смешанной венозной крови кислородом (Sv 02 ) и по захвату кислорода периферическими тканями.
Функция внешнего дыхания описывается четырьмя объёмами (дыхательный объём, резервный объём вдоха, резервный объём выдоха и остаточный объём) и четырьмя ёмкостями (ёмкость вдоха, функциональная остаточная ёмкость, жизненная ёмкость и общая ёмкость лёгких): в ОИТР в повседневной практике используется только измерение дыхательного объёма.
Уменьшение функциональной резервной ёмкости вследствие ателектазов, положения на спине, уплотнения лёгочной ткани (застойные явления) и коллапса лёгких, плеврального выпота, ожирения приводят к гипоксии.СРАР, РЕЕР и физиотерапия направлены на ограничение этих факторов.
Общее периферическое сопротивление сосудов ( ОПСС ). Уравнение Франка.
Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением.
Как следует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.
Прямых бескровных методов измерения общего периферического сопротивления не разработано, и его величина определяется из уравнения Пуазейля для гидродинамики:
где R — гидравлическое сопротивление, l — длина сосуда, v — вязкость крови, r — радиус сосудов.
Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обычно неизвестными, Франк. используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:
где Р1—Р2 — разность давлений в начале и в конце участка сосудистой системы, Q — величина кровотока через этот участок, 1332— коэффициент перевода единиц сопротивления в систему CGS.
Уравнение Франка широко используется на практике для определения сопротивления сосудов, хотя оно не всегда отражает истинные физиологические взаимоотношения между объемным кровотоком, АД и сопротивлением сосудов кровотоку у теплокровных. Эти три параметра системы действительно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время их изменения могут быть в разной мере взаимозависимыми. Так, в конкретных случаях уровень САД может определяться преимущественно величиной ОПСС или в основном СВ.
Рис. 9.3. Более выраженная величина повышения сопротивления сосудов бассейна грудной аорты по сравнению с его изменениями в бассейне плечеголовной артерии при прессорном рефлексе.
В обычных физиологических условиях ОПСС составляет от 1200 до 1700 дин • с ¦ см. при гипертонической болезни эта величина может возрастать в два раза против нормы и быть равной 2200—3000 дин • с • см-5.
Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистых отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис. 9.3 показан пример более выраженной степени повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плечеголовной артерии. Поэтому прирост кровотока в плечеголовной артерии будет больше, чем в грудной аорте. На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.
Периферическое сопротивление сосудов (опсс). Сопротивление сосудов Периферическое сопротивление и эластичность сосудов отражают
Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением :
Как следует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.
Прямых бескровных методов измерения общего периферического сопротивления не разработано, и его величина определяется изуравнения Пуазейля для гидродинамики:
где R — гидравлическое сопротивление, l — длина сосуда, v — вязкость крови, r — радиус сосудов.
Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обычно неизвестными, Франк , используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:
где Р1-Р2 — разность давлений в начале и в конце участка сосудистой системы, Q — величина кровотока через этот участок, 1332- коэффициент перевода единиц сопротивления в систему CGS.
Уравнение Франка широко используется на практике для определения сопротивления сосудов, хотя оно не всегда отражает истинные физиологические взаимоотношения между объемным кровотоком, АД и сопротивлением сосудов кровотоку у теплокровных. Эти три параметра системы действительно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время их изменения могут быть в разной мере взаимозависимыми. Так, в конкретных случаях уровень САД может определяться преимущественно величиной ОПСС или в основном СВ.
Рис. 9.3. Более выраженная величина повышения сопротивления сосудов бассейна грудной аорты по сравнению с его изменениями в бассейне плечеголовной артерии при прессорном рефлексе.
В обычных физиологических условиях ОПСС составляет от 1200 до 1700 дин с ¦ см, при гипертонической болезни эта величина может возрастать в два раза против нормы и быть равной 2200-3000 дин с см-5.
Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистых отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис. 9.3 показан пример более выраженной степени повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плечеголовной артерии. Поэтому прирост кровотока в плечеголовной артерии будет больше, чем в грудной аорте. На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.
65
Рассмотрим для конкретности пример ошибочного (ошибка, если делить на S) вычисления общего сосудистого сопротивления. В ходе обобщения клинических результатов используются данные больных разного роста, возраста и веса. Для крупного больного (например, стокилограммового) МОК 5 литров в минуту в покое может быть недостаточным. Для среднего – в пределах нормы, а для больного малого веса, скажем, 50 килограмм – избыточным. Как учесть эти обстоятельства?
В течение последних двух десятков лет большинство врачей пришли к негласной договоренности: относить те показатели кровообращения, которые зависят от размеров человека, к поверхности его тела. Поверхность (S) вычисляется в зависимости от веса и роста по формуле (хорошо построенные номограммы дают более точные отношения):
S=0,007124 W 0,425 H 0,723 , W–вес; H–рост.
Если исследуется один больной, то использование индексов не актуально, но когда нужно сравнить показатели различных больных (группы), провести их статобработку, сравнение с нормами, то почти всегда необходимо пользоваться индексами.
Общее сосудистое сопротивление большого круга кровообращения (ОСС) используется широко и, к сожалению, стало источником необоснованных выводов и интерпретаций. Поэтому мы здесь остановимся на нём подробно.
Напомним формулу, по которой вычисляется абсолютная величина общего сосудистого сопротивления (ОСС, или ОПС, ОПСС, используются разные обозначения):
ОСС=79,96 (АД-ВД) МОК -1 дин*с*см — 5 ;
79,96 – коэффициент размерности, АД – среднее артериальное давление в мм рт. ст., ВД — венозное давление в мм рт. ст., МОК – минутный объем кровообращения в л/мин)
Пусть у крупного человека (полного взрослого европейца) МОК=4 литра в минуту, АД-ВД=70, тогда ОСС приблизительно (чтобы не утерять суть за десятыми долями) будет иметь величину
OСC=79,96 (АД-ВД) МОК -1 @ 80 70/[email protected] дин*с*см -5 ;
запомним — 1400 дин*с*см — 5 .
Пусть у небольшого человека (худого, низкого роста, но вполне жизнеспособного) МОК=2 литра в минуту, АД-ВД=70, отсюда ОСС будет приблизительно
79,96 (АД-ВД) МОК -1 @80 70/[email protected] дин*с*см -5 .
ОПС у небольшого человека больше, чем у крупного в 2 раза. У обоих гемодинамика в норме, а сравнивать показатели ОСС между собой и с нормой не имеет никагого смысла. Однако такие сравнения выполняются, и по ним делаются клинические заключения .
Чтобы можно было сравнивать, вводятся индексы, учитывающие поверхность (S) тела человека. Умножив общее сосудистое сопротивление (ОСС) на S, получим индекс (ОСС*S=ИОСС), который можно сравнивать:
ИОСС=79,96 (АД-ВД) МОК -1 S (дин*с*м 2 *см -5).
Из опыта измерений и вычислений известно, что для крупного человека S примерно 2 м 2 , для очень маленького — примем 1 м 2 . Их общие сосудистые сопротивления не будут равными, а индексы равны:
ИОСС=79,96 70 4 -1 2=79,96 70 2 -1 1=2800.
Если исследуется один и тот же больной без сравнения с другими и с нормативами, вполне допустимо использовать прямые абсолютные оценки функции и свойств ССС.
Если исследуются разные, особенно отличающиеся размерами больные и если необходима статистическая обработка, то нужно использовать индексы.
Индекс эластичности артериального сосудистого резервуара (ИЭА)
ИЭА = 1000 СИ/[(АДС — АДД)*ЧСС]
вычисляется в соответствии с законом Гука и моделью Франка. ИЭА тем больше, чем больше СИ, и тем меньше, чем больше произведение частоты сокращений (ЧСС) на разность артериального систолического (АДС) и диастолического (АДД) давлений. Можно вычислять эластичность артериального резервуара (или модуль упругости) используя скорость движения пульсовой волны. При этом будет оценен модуль упругости только той части артериального сосудистого резервуара, которая используется для измерения скорости пульсовой волны.
Индекс эластичности лёгочного артериального сосудистого резервуара (ИЭЛА)
ИЭЛА = 1000 СИ/[(ЛАДС — ЛАДД)*ЧСС]
вычисляется аналогично предыдущему описанию: ИЭЛА тем больше, чем больше СИ и тем меньше, чем больше произведение частоты сокращений на разность лёгочного артериального систолическкого (ЛАДС) и диастолического (ЛАДД) давлений. Эти оценки очень
Повышенное периферическое сопротивление сосудов — Сердце феникса
Что такое общее периферическое сопротивление?
Общее периферическое сопротивление (ОПС) – это сопротивление току крови, присутствующее в сосудистой системе организма.
Его можно понимать как количество силы, противодействующей сердцу по мере того, как оно перекачивает кровь в сосудистую систему. Хотя общее периферическое сопротивление играет важнейшую роль в определении кровяного давления, оно является исключительно показателем состояния сердечно-сосудистой системы и его не следует путать с давлением, оказываемым на стенки артерий, которое служит показателем кровяного давления.
Составляющие сосудистой системы
Сосудистая система, которая отвечает за ток крови от сердца и к сердцу, может быть подразделена на две составляющие: системное кровообращение (большой круг кровообращения) и легочную сосудистую систему (малый круг кровообращения).
Легочная сосудистая система доставляет кровь к легким, где та обогащается кислородом, и от легких, а системное кровообращение отвечает за перенос этой крови к клеткам организма по артериям, и возвращение крови обратно к сердцу после кровоснабжения.
Что такое опсс в кардиологии
Общее периферическое сопротивление влияет на работу этой системы и в итоге может в значительной степени воздействовать на кровоснабжение органов.
Общее периферическое сопротивление описывается посредством частного уравнения:
ОПС = изменение давления / сердечный выброс
Изменение давления – это разность среднего артериального давления и венозного давления.
Среднее артериальное давление равняется диастолическому давлению плюс одна треть разницы между систолическим и диастолическим давлением. Венозное кровяное давление может быть измерено при помощи инвазивной процедуры с применением специальных инструментов, которая позволяет физически определять давление внутри вены.
Сердечный выброс – это количество крови, перекачиваемой сердцем за одну минуту.
Факторы влияющие на компоненты уравнения ОПС
Существует ряд факторов, которые могут значительно влиять на компоненты уравнения ОПС, таким образом, изменяя значения самого общего периферического сопротивления.
Эти факторы включают диаметр сосудов и динамику свойств крови. Диаметр кровеносных сосудов обратно пропорционален кровяному давлению, поэтому меньшие кровеносные сосуды повышают сопротивление, таким образом, повышая и ОПС. И наоборот, более крупные кровеносные сосуды соответствуют менее концентрированному объему частиц крови, оказывающих давления на стенки сосудов, что означает более низкое давление.
Гидродинамика крови
Гидродинамика крови также может существенно способствовать повышению или понижению общего периферического сопротивления.
За этим стоит изменение уровней факторов свертывания и компонентов крови, которые способны менять ее вязкость. Как можно предположить, более вязкая кровь вызывает большее сопротивление кровотоку.
Менее вязкая кровь легче перемещается через сосудистую систему, что приводит к понижению сопротивления.
В качестве аналогии можно привести разницу в силе, необходимой для перемещения воды и патоки.
Фото: study.com
Периферическое сопротивление сосудов (ОПСС)
Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением:
Используется для расчета величины этого параметра или его изменений.
Для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.
Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистыхотделов.
Показатели гемодинамики
При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем.
На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.
Сопротивление, разность давления и поток связаны основным уравнением гидродинамики: Q=AP/R.
Так как поток (Q) должен быть идентичен в каждом из последовательно расположенных отделов сосудистой системы, то падение давления, которое происходит на протяжении каждого из этих отделов, является прямым отражением сопротивления, которое существует в данном отделе.
Таким образом, существенное падение артериального давления, при прохождении крови через артериолы, указывает, что артериолы обладают значительным сопротивлением кровотоку. Среднее давление незначительно снижается в артериях, так как они обладают незначительным сопротивлением.
Аналогично умеренное падение давления, которое происходит в капиллярах, является отражением того, что капилляры обладают умеренным сопротивлением по сравнению с артериолами.
Поток крови, протекающий через отдельные органы, может изменяться в десять и более раз.
Так как среднее артериальное давление является относительно устойчивым показателем деятельности сердечно-сосудистой системы, существенные изменения кровотока органа являются следствием изменения его общего сосудистого сопротивления кровотоку. Последовательно расположённые сосудистые отделы объединены в определенные группы в пределах органа, и общее сосудистое сопротивление органа должно равняться сумме сопротивлений его последовательно соединенных сосудистых отделов.
Так как артериолы обладают значительно большим сосудистым сопротивлением по сравнению с другими отделами сосудистого русла, то общее сосудистое сопротивление любого органа определяется в значительной степени сопротивлением артериол.
Сопротивление артериол, конечно, в значительной степени определяется радиусом артериол. Следовательно, кровоток через орган в первую очередь регулируется изменением внутреннего диаметра артериол за счет сокращения или расслабления мышечной стенки артериол.
Когда артериолы органа изменяют свой диаметр, то меняется не только кровоток через орган, но претерпевает изменения и падение артериального давления, происходящее в данном органе.
Сужение артериол вызывает более значительное падение давления в артериолах, что приводит к увеличению артериального давления и одновременному снижению изменений сопротивления артериол на давление в сосудах.
(Функция артериол в какой-то степени напоминает роль дамбы: в результате закрытия ворот дамбы снижается поток и повышается ее уровень в резервуаре позади плотины и снижается уровень после нее).
Напротив, увеличение органного кровотока, вызванное расширением артериол, сопровождается снижением артериального давления и увеличением капиллярного давления.
Из-за изменений гидростатического давления в капиллярах сужение артериол ведет к транскапиллярной реабсорбции жидкости, в то время как расширение артериол способствует транскапиллярной фильтрации жидкости.
Под периферическим сосудистым сопротивлением понимают сопротивление току крови, создаваемое сосудами. Сердце как орган-насос должно преодолеть это сопротивление с тем, чтобы нагнетать кровь в капилляры и возвращать ее обратно сердцу.
Периферическое сопротивление определяет так называемую последующую нагрузку сердца. Ее рассчитывают по разнице артериального давления и ЦВД и по МОС. Разница между средним артериальным давлением и ЦВД обозначается буквой Р и соответствует снижению давления внутри большого круга кровообращения.
Для пересчета общего периферического сопротивления в систему ДСС (длина•с•см-5) необходимо полученные величины умножить на 80. Окончательная формула для расчета периферического сопротивления (Рк) выглядит так:
Для определения Р необходимо перерасчитать значения ЦВД в сантиметрах водного столба в миллиметры ртутного столба.
Для такого пересчета имеется следующее соотношение:
1 см вод. ст. = 0,74 мм рт. ст.
В соответствии с таким отношением необходимо величины в сантиметрах водного столба умножить на 0,74. Так, ЦВД 8 см вод. ст. соответствует давлению 5,9 мм рт. ст. Для перевода миллиметров ртутного столба в сантиметры водного столба используют следующее соотношение:
1 мм рт. ст. = 1,36 см вод. ст.
ЦВД 6 см рт.
ст. соответствует давлению 8,1 см вод. ст. Величина периферического сопротивления, рассчитанная с помощью приведенных формул, отображает общее сопротивление всех сосудистых участков и часть сопротивления большого круга.
Периферическое сосудистое сопротивление часто поэтому обозначают так же, как общее периферическое сопротивление.
Что такое общее периферическое сопротивление?
Решающую роль в сосудистом сопротивлении играют артериолы, и их называют сосудами сопротивления. Расширение артериол приводит к падению периферического сопротивления и к усилению капиллярного кровотока.
Сужение артериол вызывает увеличение периферического сопротивления и одновременно перекрытие отключенного капиллярного кровотока. Последнюю реакцию можно особенно хорошо проследить в фазе централизации циркуляторного шока. Нормальные величины общего сосудистого сопротивления (Рл) в большом круге кровообращения в положении лежа и при нормальной комнатной температуре находятся в пределах 900—1300 дин•с•см-5.
В соответствии с общим сопротивлением большого круга кровообращения можно рассчитать общее сосудистое сопротивление в малом круге кровообращения.
Формула расчета сопротивления легочных сосудов (Рл) такова:
Сюда же относится разница между средним давлением в легочной артерии и давлением в левом предсердии. Так как систолическое давление в легочной артерии в конце диастолы соответствует давлению в левом предсердии, то необходимое для расчета легочного сопротивления определение давления может быть выполнено при помощи одного единственного катетера, проведенного в легочную артерию.
Source: ekoshka.ru
Повышенное периферическое сопротивление сосудов. Сопротивление кровеносных сосудов и гипертоническая болезнь
Под этим термином понимают общее сопротивление всей сосудистой системы выбрасываемому сердцем потоку крови. Это соотношение описывается уравнением :
Как следует из этого уравнения, для расчета ОПСС необходимо определить величину системного артериального давления и сердечного выброса.
Прямых бескровных методов измерения общего периферического сопротивления не разработано, и его величина определяется изуравнения Пуазейля для гидродинамики:
где R — гидравлическое сопротивление, l — длина сосуда, v — вязкость крови, r — радиус сосудов.
Поскольку при исследовании сосудистой системы животного или человека радиус сосудов, их длина и вязкость крови остаются обычно неизвестными, Франк , используя формальную аналогию между гидравлической и электрической цепями, привел уравнение Пуазейля к следующему виду:
где Р1-Р2 — разность давлений в начале и в конце участка сосудистой системы, Q — величина кровотока через этот участок, 1332- коэффициент перевода единиц сопротивления в систему CGS.
Уравнение Франка широко используется на практике для определения сопротивления сосудов, хотя оно не всегда отражает истинные физиологические взаимоотношения между объемным кровотоком, АД и сопротивлением сосудов кровотоку у теплокровных. Эти три параметра системы действительно связаны приведенным соотношением, но у разных объектов, в разных гемодинамических ситуациях и в разное время их изменения могут быть в разной мере взаимозависимыми. Так, в конкретных случаях уровень САД может определяться преимущественно величиной ОПСС или в основном СВ.
Рис. 9.3. Более выраженная величина повышения сопротивления сосудов бассейна грудной аорты по сравнению с его изменениями в бассейне плечеголовной артерии при прессорном рефлексе.
В обычных физиологических условиях ОПСС составляет от 1200 до 1700 дин с ¦ см, при гипертонической болезни эта величина может возрастать в два раза против нормы и быть равной 2200-3000 дин с см-5.
Величина ОПСС состоит из сумм (не арифметических) сопротивлений регионарных сосудистых отделов. При этом в зависимости от большей или меньшей выраженности изменений регионарного сопротивления сосудов в них соответственно будет поступать меньший или больший объем крови, выбрасываемый сердцем. На рис. 9.3 показан пример более выраженной степени повышения сопротивления сосудов бассейна нисходящей грудной аорты по сравнению с его изменениями в плечеголовной артерии. Поэтому прирост кровотока в плечеголовной артерии будет больше, чем в грудной аорте. На этом механизме базируется эффект «централизации» кровообращения у теплокровных, обеспечивающий в тяжелых или угрожающих организму условиях (шок, кровопотеря и др.) перераспределение крови, прежде всего, к головному мозгу и миокарду.
65
Рассмотрим для конкретности пример ошибочного (ошибка, если делить на S) вычисления общего сосудистого сопротивления. В ходе обобщения клинических результатов используются данные больных разного роста, возраста и веса. Для крупного больного (например, стокилограммового) МОК 5 литров в минуту в покое может быть недостаточным. Для среднего – в пределах нормы, а для больного малого веса, скажем, 50 килограмм – избыточным. Как учесть эти обстоятельства?
В течение последних двух десятков лет большинство врачей пришли к негласной договоренности: относить те показатели кровообращения, которые зависят от размеров человека, к поверхности его тела. Поверхность (S) вычисляется в зависимости от веса и роста по формуле (хорошо построенные номограммы дают более точные отношения):
S=0,007124 W 0,425 H 0,723 , W–вес; H–рост.
Если исследуется один больной, то использование индексов не актуально, но когда нужно сравнить показатели различных больных (группы), провести их статобработку, сравнение с нормами, то почти всегда необходимо пользоваться индексами.
Общее сосудистое сопротивление большого круга кровообращения (ОСС) используется широко и, к сожалению, стало источником необоснованных выводов и интерпретаций. Поэтому мы здесь остановимся на нём подробно.
Напомним формулу, по которой вычисляется абсолютная величина общего сосудистого сопротивления (ОСС, или ОПС, ОПСС, используются разные обозначения):
ОСС=79,96 (АД-ВД) МОК -1 дин*с*см — 5 ;
79,96 – коэффициент размерности, АД – среднее артериальное давление в мм рт. ст., ВД — венозное давление в мм рт. ст., МОК – минутный объем кровообращения в л/мин)
Пусть у крупного человека (полного взрослого европейца) МОК=4 литра в минуту, АД-ВД=70, тогда ОСС приблизительно (чтобы не утерять суть за десятыми долями) будет иметь величину
OСC=79,96 (АД-ВД) МОК -1 @ 80 70/[email protected] дин*с*см -5 ;
запомним — 1400 дин*с*см — 5 .
Пусть у небольшого человека (худого, низкого роста, но вполне жизнеспособного) МОК=2 литра в минуту, АД-ВД=70, отсюда ОСС будет приблизительно
79,96 (АД-ВД) МОК -1 @80 70/[email protected] дин*с*см -5 .
ОПС у небольшого человека больше, чем у крупного в 2 раза. У обоих гемодинамика в норме, а сравнивать показатели ОСС между собой и с нормой не имеет никагого смысла. Однако такие сравнения выполняются, и по ним делаю
Повышение периферического сосудистого сопротивления что. Сопротивление сосудов
Физиологическая роль артериол в регуляции кровотока
Кроме того, тонус артериол может изменяться локально, в пределах данного органа или ткани. Локальное изменение тонуса артериол, не оказывая заметного влияния на общее периферическое сопротивление, будет определять величину кровотока в данном органе. Так, тонус артериол заметно снижается в работающих мышцах, что приводит к увеличению их кровоснабжения.
Регуляция тонуса артериол
Поскольку изменение тонуса артериол в масштабе целостного организма и в масштабе отдельных тканей имеет совершенно различное физиологическое значение, существуют как локальные, так и центральные механизмы его регуляции.
Локальная регуляция сосудистого тонуса
В отсутствие всяких регуляторных воздействий изолированная артериола, лишенная эндотелия, сохраняет некоторый тонус, зависящий от самих гладких мышц. Он называется базальным тонусом сосуда .
На сосудистый тонус постоянно влияют такие факторы среды, как pH и концентрация CO 2 (снижение первой и повышение второй приводят к уменьшению тонуса). Эта реакция оказывается физиологически целесообразной, так как следующее за локальным снижением тонуса артериол увеличение местного кровотока, собственно, и приведет к восстановлению тканевого гомеостаза.
Напротив, медиаторы воспаления, такие, как простагландин E 2 и гистамин , вызывают снижение тонуса артериол.
Изменение метаболического состояния ткани может менять баланс прессорных и депрессорных факторов. Так, снижение pH и увеличение концентрации CO 2 смещает баланс в пользу депрессорных влияний.
Системные гормоны, регулирующие сосудистый тонус
Участие артериол в патофизиологических процессах
Воспаление и аллергические реакции
Важнейшая функция воспалительной реакции — локализация и лизис чужеродного агента, вызвавшего воспаление. Функции лизиса выполняют клетки, доставляющиеся в очаг воспаления током крови (главным образом, нейтрофилы и лимфоциты . Соответственно, оказывается целесообразным увеличить в очаге воспаления локальный кровоток. Поэтому «медиаторами воспаления» служат вещества, имеющие мощный сосудорасширяющий эффект — гистамин и простагландин E 2 . Три из пяти классических симптомов воспаления (покраснение, отёк, жар) вызваны именно расширением сосудов. Увеличение притока крови — следовательно, краснота; рост давления в капиллярах и увеличение фильтрации из них жидкости — следовательно, отёк (впрочем, в его формировании участвует и рост проницаемости стенок капилляров), увеличение притока нагретой крови от ядра тела — следовательно, жар (хотя здесь, возможно, не меньшую роль играет увеличение скорости обмена веществ в очаге воспаления).
Если для описания движения крови в сосуде использовать фундаментальные физические законы, то, согласно закону Ома для электрической цепи:
Напряжение (скорость кровотока) = Разница давлений / Сопротивление сосуда .
Таким образом, с увеличением перепада давления скорость кровотока возрастает, а с увеличением сопротивления стенок сосуда, наоборот, снижается.
Сопротивление кровотоку возникает за счет внутреннего трения движении потока. Кровь относительно легко проходит по крупным сосудам, но небольшие артерии, и особенно артериолы и капилляры, обладают маленьким диаметром и, создавая сопротивление, замедляют кровоток (периферическое сопротивление). Таким образом, чем больше периферическое сопротивление, тем большим должно быть давление.
Кровоток в системе кровообращения создается за счет перепада давления между артериями и венами. Поскольку в системном круге среднее артериальное давление снижается от 100 мм рт. ст. до примерно 3 мм рт. ст., то перепад давления составляет 97 мм рт. ст. Поэтому при необходимости кровоток может оптимизироваться за счет изменения скорости (производительность работы сердца = сердечный выброс) и сопротивления сосудистой системы потоку крови (периферическое сопротивление). Отсюда для системного кровообращения получаем выражение:
Сердечный выброс = Пер
Периферическое сосудистое сопротивление | Справочник врача
Под периферическим сосудистым сопротивлением понимают сопротивление току крови, создаваемое сосудами. Сердце как орган-насос должно преодолеть это сопротивление с тем, чтобы нагнетать кровь в капилляры и возвращать ее обратно сердцу. Периферическое сопротивление определяет так называемую последующую нагрузку сердца. Ее рассчитывают по разнице артериального давления и ЦВД и по МОС. Разница между средним артериальным давлением и ЦВД обозначается буквой Р и соответствует снижению давления внутри большого круга кровообращения. Для пересчета общего периферического сопротивления в систему ДСС (длина•с•см-5) необходимо полученные величины умножить на 80. Окончательная формула для расчета периферического сопротивления (Рк) выглядит так:
Для определения Р необходимо перерасчитать значения ЦВД в сантиметрах водного столба в миллиметры ртутного столба. Для такого пересчета имеется следующее соотношение:
1 см вод. ст. = 0,74 мм рт. ст.
В соответствии с таким отношением необходимо величины в сантиметрах водного столба умножить на 0,74. Так, ЦВД 8 см вод. ст. соответствует давлению 5,9 мм рт. ст. Для перевода миллиметров ртутного столба в сантиметры водного столба используют следующее соотношение:
1 мм рт. ст. = 1,36 см вод. ст.
ЦВД 6 см рт. ст. соответствует давлению 8,1 см вод. ст. Величина периферического сопротивления, рассчитанная с помощью приведенных формул, отображает общее сопротивление всех сосудистых участков и часть сопротивления большого круга. Периферическое сосудистое сопротивление часто поэтому обозначают так же, как общее периферическое сопротивление. Решающую роль в сосудистом сопротивлении играют артериолы, и их называют сосудами сопротивления. Расширение артериол приводит к падению периферического сопротивления и к усилению капиллярного кровотока. Сужение артериол вызывает увеличение периферического сопротивления и одновременно перекрытие отключенного капиллярного кровотока. Последнюю реакцию можно особенно хорошо проследить в фазе централизации циркуляторного шока. Нормальные величины общего сосудистого сопротивления (Рл) в большом круге кровообращения в положении лежа и при нормальной комнатной температуре находятся в пределах 900—1300 дин•с•см-5.
В соответствии с общим сопротивлением большого круга кровообращения можно рассчитать общее сосудистое сопротивление в малом круге кровообращения. Формула расчета сопротивления легочных сосудов (Рл) такова:
Сюда же относится разница между средним давлением в легочной артерии и давлением в левом предсердии. Так как систолическое давление в легочной артерии в конце диастолы соответствует давлению в левом предсердии, то необходимое для расчета легочного сопротивления определение давления может быть выполнено при помощи одного единственного катетера, проведенного в легочную артерию.
Сопротивление сосудов
8)классификация кровеносных сосудов.
Кровено́сные
сосу́ды —
эластичные
трубчатые образования в
теле животных и человека,
по которым силой ритмически
сокращающегося сердца или
пульсирующего сосуда осуществляется
перемещение крови по
организму: к органам и тканям по артериям,
артериолам, артериальным капиллярам,
и от них к сердцу — по венозным капиллярам,
венулам и венам.
Среди
сосудов кровеносной системы
различают артерии, артериолы, капилляры, венулы, вены и артериоло-венозные
анастомозы;
сосуды системы микроциркуляторного
русла осуществляют взаимосвязь между
артериями и венами. Сосуды разных типов
отличаются не только по своей толщине,
но и по тканевому составу и функциональным
особенностям.
Артерии —
сосуды, по которым кровь движется от
сердца. Артерии имеют толстые стенки,
в которых содержатся мышечные волокна,
а также коллагеновые и эластические
волокна. Они очень эластичные и могут
сужаться или расширяться, в зависимости
от количества перекачиваемой сердцем
крови.
Артериолы —
мелкие артерии, по току крови
непосредственно предшествующие
капиллярам. В их сосудистой стенке
преобладают гладкие мышечные волокна,
благодаря которым артериолы могут
менять величину своего просвета и,
таким образом, сопротивление.
Капилляры —
это мельчайшие кровеносные сосуды,
настолько тонкие, что вещества могут
свободно проникать через их стенку.
Через стенку капилляров осуществляется
отдача питательных веществ икислорода из
крови в клетки и переход углекислого
газа и
других продуктов жизнедеятельности
из клеток в кровь.
Венулы —
мелкие кровеносные сосуды, обеспечивающие
в большом круге отток обедненной
кислородом и насыщенной продуктами
жизнедеятельности крови из капилляров
в вены.
Вены —
это сосуды, по которым кровь движется
к сердцу. Стенки вен менее толстые, чем
стенки артерий и содержат соответственно
меньше мышечных волокон и эластических
элементов.
9)Объемная скорость кровотока
Объемная
скорость потока крови (кровотока) сердца —
это динамический показатель деятельности сердца.
Соответствующая этому
показателю переменная физическая величина характеризует
объёмное количество крови,
проходящее через поперечное
сечение потока (в
сердце) за единицу времени.
Объемную
скорость кровотока сердца оценивают по формуле:
CO = HR · SV / 1000,
где: HR — частота
сокращений сердца (1
/ мин), SV — систолический
объём кровотока (мл, л).
Система
кровообращения,
или сердечно-сосудистая
система представляет
собой замкнутую систему (см. схему
1, схему
2, схему
3).
Она состоит из двух насосов (правое
сердце и левое сердце), соединенных
между собой последовательнокровеносными
сосудами большого
круга кровообращения и
кровеносными сосудами малого
круга кровообращения(сосудами лёгких).
В любом совокупном сечении этой системы
протекает одно и то же количество крови.
В частности, при одних и тех же условиях поток
крови, протекающий через правое сердце,
равен потоку крови, протекающей через
левое сердце. У человека в состоянии покоя объёмная
скорость кровотока (как правого, так и
левого) сердца составляет
~4,5 ÷ 5,0 л / мин.
Целью системы
кровообращения является обеспечение
непрерывного кровотока во
всех органах и тканях в
соответствии с потребностями организма.
Сердце является насосом, перекачивающим
кровь по системе кровообращения. Вместе
с кровеносными сосудами
сердце актуализирует цель
системы кровообращения. Отсюда, объёмная
скорость кровотока сердца является переменной,
характеризующей эффективность работы сердца.
Кровоток
сердца управляется сердечно-сосудистым
центром и
зависит от ряда
переменных.
Главными из них являются:объёмная
скорость потока венозной крови к
сердцу (л / мин), конечно-диастолический
объём кровотока (мл), систолический
объём кровотока (мл), конечно-систолический
объём кровотока (мл), частота
сокращений сердца (1 / мин).
10) Линейная скорость потока крови (кровотока)
— это физическая величина,
являющаяся мерой движения частиц
крови, составляющих поток. Теоретически она
равна расстоянию, проходимому
частицей вещества,
составляющего поток, в единицувремени:
v = L / t.
Здесь L
—
путь (м),
t
—
время (c). Кроме
линейной скорости кровотока
различают объёмную
скорость потока крови,
или объёмную
скорость кровотока. Средняя линейная
скорость ламинарного кровотока (v)
оценивается интегрированием линейных
скоростей всех цилиндрических слоев
потока:
v = ( dP · r4 ) / ( 8η · l ),
где:
dP
— разница давления
крови в
начале и в конце участка кровеносного
сосуда, r
— радиус сосуда, η —
вязкость
крови,
l
— длина участка сосуда, коэффициент
8 — это результат интегрирования скоростей,
движущихся в сосуде слоев крови.
Объемная
скорости кровотока (Q)
и линейная скорости кровотока
связаныотношением :
Q = v · π · r2 .
Подставив
в это отношение выражение для v
получим
уравнение («закон») Хагена-Пуазейля для
объёмной скорости кровтотка:
Q = dP · ( π · r4 / 8η · l )
(1).
Исходя
из простой логики, можно утверждать,
что объёмная скорость любого потока
прямо пропорциональна движущейсиле и
обратно пропорциональна сопротивлению
потоку. Аналогично, объёмная скорость
кровотока ( Q )
прямо пропорциональна движущей силе
(градиентдавления,
dP ),
обеспечивающей кровоток, и обратно
пропорциональна сопротивлению
кровотоку ( R ):
Q = dP / R .
Отсюда R = dP / Q .
Подставляя в это отношение выражение
(1)
для Q ,
получим формулу для
оценки сопротивления кровотоку:
R = ( 8η · l ) / ( π · r4 ).
Из
всех этих формул видно, что самой
значимой переменной,
определяющей линейную и объёмную
скорости кровотока, является просвет
(радиус) сосуда. Эта переменная является
главной переменной в управлении кровотоком.
11)
Гидродинамическое
сопротивление прямо пропорционально
длине сосуда и вязкости крови и обратно
пропорционально радиусу сосуда в 4-й
степени, то есть больше всего зависит
от просвета сосуда. Так как наибольшим
сопротивлением обладают артериолы , ОПСС зависит
главным образом от их тонуса.
Различают
центральные механизмы регуляции тонуса
артериол и местные механизмы регуляции
тонуса артериол.
К
первым относятся нервные и гормональные
влияния ,
ко вторым — миогенная , метаболическаяи эндотелиальная
регуляция .
На
артериолы оказывают постоянный тонический
сосудосуживающий эффект симпатические
нервы .
Величина этого симпатического тонуса
зависит от импульсации, поступающей
отбарорецепторов каротидного
синуса , дуги
аорты и легочных
артерий .
Основные
гормоны, в норме участвующие в регуляции
тонуса артериол, — это адреналин инорадреналин ,
вырабатываемые мозговым
веществом надпочечников .
Миогенная
регуляция сводится к сокращению или
расслаблению гладких мышц сосудов в
ответ на изменения трансмурального
давления; при этом напряжение в их стенке
остается постоянным. Тем самым
обеспечивается ауторегуляция местного
кровотока — постоянство кровотока при
меняющемся перфузионном давлении.
Метаболическая
регуляция обеспечивает расширение
сосудов при повышении
основного обмена(за
счет выброса аденозина и простагландинов )
и гипоксии (также
за счет выделения простагландинов).
Наконец, эндотелиальные
клетки выделяют
ряд вазоактивных
веществ — окись
азота ,эйкозаноиды ( производные
арахидоновой кислоты ), сосудосуживающие
пептиды ( эндотелин-1, ангиотензин
II )
и свободные
радикалы кислорода .
12)давление крови в разных отделах
сосудистого русла
Давление
крови в различных участках сосудистой
системы. Среднее давление в аорте
поддерживается на высоком уровне
(примерно 100 мм рт. ст.), поскольку сердце
непрестанно перекачивает кровь в аорту.
С другой стороны, артериальное давление
меняется от систолического уровня 120
мм рт. ст. до диастолического уровня 80
мм рт. ст., поскольку сердце перекачивает
кровь в аорту периодически, только во
время систолы. По мере продвижения крови
в большом круге кровообращения среднее
давление неуклонно снижается, и в месте
впадения полых вен в правое предсердие
оно составляет 0 мм рт. ст. Давление в
капиллярах большого круга кровообращения
снижается от 35 мм рт. ст. в артериальном
конце капилляра до 10 мм рт. ст. в венозном
конце капилляра. В среднем «функциональное»
давление в большинстве капиллярных
сетей составляет 17 мм рт. ст. Этого
давления достаточно для перехода
небольшого количества плазмы через
мелкие поры в капиллярной стенке, в то
время как питательные вещества легко
диффундируют через эти поры к клеткам
близлежащих тканей. В правой части
рисунке показано изменение давления в
различных участках малого (легочного)
круга кровообращения. В легочных артериях
видны пульсовые изменения давления,
как и в аорте, однако уровень давления
значительно ниже: систолическое давление
в легочной артерии — в среднем 25 мм рт.
ст., а диастоли-ческое — 8 мм рт. ст. Таким
образом, среднее давление в легочной
артерии составляет всего 16 мм рт. ст., а
среднее давление в легочных капиллярах
равно примерно 7 мм рт. ст. В то же время
общий объем крови, проходящий через
легкие за минуту, — такой же, как и в
большом круге кровообращения. Низкое
давление в системе легочных капилляров
необходимо для выполнения газообменной
функции легких.
Источник: http://meduniver.com/Medical/Physiology/581.html MedUniver
13)артериальное давление
Артериальное
давление — один из важнейших
параметров, характеризующих
работу кровеносной
системы. Давление
крови определяется объёмом крови,
перекачиваемым в единицу времени сердцем и
сопротивлением сосудистого русла.
Поскольку кровь движется под
влиянием градиента давления
в сосудах, создаваемого сердцем, то
наибольшее давление крови будет на
выходе крови из сердца (в левом желудочке),
несколько меньшее давление будет
в артериях,
ещё более низкое в капиллярах, а самое
низкое в венах и
на входе сердца (в правом предсердии).
Давление на выходе из сердца, в аорте и
в крупных артериях отличается незначительно
(на 5—10 мм
рт. ст.), поскольку
из-за большого диаметра этих сосудов
их гидродинамическое
сопротивление невелико.
Точно так же незначительно отличается
давление в крупных венах и в правом
предсердии. Наибольшее падение давления
крови происходит в мелких
сосудах: артериолах, капиллярах и венулах.
Верхнее
число — систолическое
артериальное давление,
показывает давление в артериях в момент,
когда сердце сжимается и выталкивает
кровь в артерии, оно зависит от силы
сокращения сердца, сопротивления,
которое оказывают стенки кровеносных
сосудов, и числа сокращений в единицу
времени.
Нижнее
число — диастолическое
артериальное давление,
показывает давление в артериях в момент
расслабления сердечной мышцы. Это
минимальное давление в артериях, оно
отражает сопротивление периферических
сосудов. По мере продвижения крови по
сосудистому руслу амплитуда колебаний
давления крови спадает, венозное и
капиллярное давление мало зависят от
фазы сердечного цикла.
Типичное
значение артериального кровяного
давления здорового человека
(систолическое/диастолическое) = 120 и
80 мм
рт. ст., давление в
крупных венах на несколько мм. рт. ст.
ниже нуля (ниже атмосферного). Разница
между систолическим артериальным
давлением и диастолическим (пульсовое
давление) в норме
составляет 30—40 мм
рт. ст.