Зависимость давления ветра от скорости: Давление ветра в зависимости от скорости и сила ветра на препятствии. Ветровая нагрузка в первом приближении. – Давление ветра в зависимости от скорости и сила ветра на препятствии. Ветровая нагрузка в первом приближении.

Содержание

Давление ветра в зависимости от скорости и сила ветра на препятствии. Ветровая нагрузка в первом приближении.

Давление ветра в зависимости от скорости и сила ветра на препятствии. Ветровая нагрузка в первом приближении.

Нормальное ветровое давление на препятствие в первом приближении определяется по формуле W=0,5*p*v*v, («Ветровая нагрузка на сооружения.» Савицкий. 1972г.)
  • где v — скорость ветра, м/с
  • p — плотность воздуха, кг/м3, зависящая от его влажности, температуры и атмосферного давления
  • 0,5 — коэффициент сопротивления (обтекания). Англосаксы используют коэффициент равный 0,75, т.е. получают данные в 1,5 раза выше, но порядок величин — тот-же, конечно

Таблица: Ветровая нагрузка ( в первом приближении). Давление ветра в зависимости от скорости и сила ветра на препятствии. Расчет для плотности воздуха 1,2 кг/м3

 
  
Скорость ветра в м/с
1 м/с
5 м/с 10 м/с 15 м/с 20 м/с 25 м/с 30 м/с
40 м/с
50 м/с
 Давление, Па = Н/м 0,60 15 60 135 240 375 540 960 1500
(Объект 1м х 1м)
Сила на 1 м2, Н
0,60 15,00 60,00 135,00 240,00 375,00 540,00 960,00 1500,00
(Объект 2м х 2м) Сила на 4 м2, Н 2,40
60,00
240,00 540,00 960,00 1500,00 2160,00 3840,00 6000,00
 (Объект 1м х 1м) Сила на 1 м2, кгс 0,06 1,53 6,12
13,78
24,49 38,27 55,10 97,96 153,06
 (Объект 2м х 2м) Сила на 4 м2, кгс 0,24 6,12 24,49 55,10 97,96 153,06 220,41 391,84 612,24

Давление ветра в зависимости от скорости и сила ветра на препятствии. Ветровая нагрузка в первом приближении.

Давление ветра в зависимости от скорости и сила ветра на препятствии. Ветровая нагрузка в первом приближении.

Нормальное ветровое давление на препятствие в первом приближении определяется по формуле W=0,5*p*v*v, («Ветровая нагрузка на сооружения.» Савицкий. 1972г.)
  • где v — скорость ветра, м/с
  • p — плотность воздуха, кг/м3, зависящая от его влажности, температуры и атмосферного давления
  • 0,5 — коэффициент сопротивления (обтекания). Англосаксы используют коэффициент равный 0,75, т.е. получают данные в 1,5 раза выше, но порядок величин — тот-же, конечно

Таблица: Ветровая нагрузка ( в первом приближении). Давление ветра в зависимости от скорости и сила ветра на препятствии. Расчет для плотности воздуха 1,2 кг/м3

 
  
Скорость ветра в м/с
1 м/с
5 м/с
10 м/с
15 м/с 20 м/с 25 м/с 30 м/с 40 м/с 50 м/с
 Давление, Па = Н/м 0,60 15 60 135 240 375 540 960 1500
(Объект 1м х 1м) Сила на 1 м2, Н 0,60 15,00 60,00 135,00 240,00
375,00
540,00 960,00 1500,00
(Объект 2м х 2м) Сила на 4 м2, Н 2,40 60,00 240,00 540,00 960,00 1500,00 2160,00 3840,00
6000,00
 (Объект 1м х 1м) Сила на 1 м2, кгс 0,06 1,53 6,12 13,78 24,49 38,27 55,10 97,96 153,06
 (Объект 2м х 2м) Сила на 4 м2, кгс
0,24
6,12 24,49 55,10 97,96 153,06 220,41 391,84 612,24

Атмосферное давление и ветер

Каким бы невесомым ни казался нам воздух, он оказывает давление на земную поверхность. Оно постоянно изменяется, что приводит к возникновению ветров.

Атмосферное давление

Воздух имеет определённый вес. Он оказывает на земную поверхность давление в среднем 1 килограмм 33 грамма на каждый квадратный сантиметр. Холодный воздух тяжелее тёплого и поэтому давит на поверхность сильнее. Солнце нагревает земную поверхность неравномерно, из-за этого неравномерно нагревается и воздух. В связи с этим на поверхности образуются области с более высоким и более низким атмосферным давлением. Они последовательно сменяют друг друга от экватора к полюсам.

Традиционно давление воздуха измеряют ртутным барометром. Показателем давления служит высота ртутного столба, которая измеряется в миллиметрах (мм рт. ст.). Среднее давление на уровне моря при температуре О С составляет 760 мм рт. ст. Эта величина принимается за нормальное атмосферное давление. Па географических картах для изображения величины давления используют способ особых изолиний — изобар. Области высокого давления, окружённые изобарами, обозначают буквой — В, а низкого — Н.

Ветер

Неравномерное распределение атмосферной) давления у земной поверхности — основная причина возникновения горизонтального перемещения воздуха — ветра. Ветер всегда дует из областей с высоким давлением в области с низким давлением и характеризуется направлением, скоростью и силой. Направление ветра определяют по той стороне горизонта, откуда он дует. Например, северо-восточный ветер дует с северо-востока на юго-запад. Для изображения направления ветров на карте используются стрелки.

О направлении господствующих ветров в данной местности можно судить по специальному графику — розе ветров. На нём отмечается число дней, в течение которых дул ветер того или иного направления. Роза ветров может быть построена на день, месяц или год. Скорость ветра измеряется в метрах в секунду (м/с) и зависит от разницы в давлении между областями повышенного и пониженного давления. Сила ветра зависит от его скорости и определяется по шкале Бофорта от 0 до 12 баллов.

Постоянные ветры

Постоянные ветры образуются вследствие существования на Земле поясов повышенного и пониженного атмосферного давления. От 30-х широт, где сформировались пояса высокого давления, к экватору — в сторону пояса низкого давления дуют пассаты. Из областей высокого давления 30-х широт в области пониженного давления в умеренных широтах дуют постоянные ветры западного переноса. В полярных широтах господствуют полярные восточные ветры.

Благодаря осевому вращению Земли ветры отклоняются от своего первоначального направления в Северном полушарии вправо, в Южном — влево. Например, южные ветры приобретают в Северном полушарии юго-западное направление, а в Южном полушарии юго-восточное.

Сезонные ветры

Сезонные ветры возникают в определённые сезоны года. К ним относят муссоны — ветры, возникающие на границе суши и моря и дважды в год меняющие своё направление на противоположное. Причина их возникновения — неравномерность нагревания и охлаждения воды и суши и, как следствие, сезонная смена давления.

Суточные ветры

Разница в нагревании и охлаждении суши и океанов проявляется не только в разные сезоны года, но и в различное время суток. Поэтому на границе суши с морем или озером в течение суток идёт образование бризов.

Значение ветров

Венгры могут изменять погоду, перенося огромные массы тёплого или холодного воздуха, облака, а вместе с ними и осадки. Именно ветер переносит влажный воздух океанов на материки. В ветреную погоду в городах легче дышится, так как ветер уносит загрязнённый воздух. Ветры, дующие над морями и океанами, порождают волны и течения. На участках суши, лишённых растительности, ветер может выдувать горные породы, вызывать пыльные бури и эрозию почв. Ветры, дующие постоянно в одном и том же направлении, всегда были морякам верными помощниками, наполняя паруса и подгоняя корабли. Люди издавна использовали энергию ветра и строили ветряные мельницы. Сегодня в ряде районов действуют ветровые электростанции, которые превращают силу ветра в электричество.

Скорость и давление ветра

Показатель ветровой

нагрузки

Районы РФ

I

II

III

IV

V

VI

VII

Скорость ветра, м/с

21

24

27

30

33

37

40

Динамическое давление , Па

270

350

450

550

700

850

1000

П р и м е ч а н и е. Московская, Ивановская и Владимирская области – 1 район.

Для рабочего состояния крана динамическое давление и скорость ветрана высоте 10 м над поверхностью земли, вне зависимости от района установки крана, но с учетом его назначения принимается по табл. 9.5.

Таблица 9.5

Скорость и давление ветра

Назначение кранов

Скорость

ветра, м/с

Динамическое давление, Па

Краны: строительные, монтажные, для полигонов железобетонных изделий, штучных грузов, а также стреловые самоходные общего назначения

14,0

125

Краны всех типов, устанавливаемые в речных и морских портах

20,0

250

Краны, устанавливаемые на объектах, исключающих возможность перерыва в работе

28,5

500

ЗадачаОценить собственную устойчивость стрелового самоходного крана, выполненного по схеме рис. 9.1.б, если: G1=42,49 кН – вес поворотной части крана; G2=118,59 кН – вес неповоротной части крана, b=2,42 м, С1=1,44 м и С2=0,02 м,=6°, h’1=2,1 м и h»1=1,0 м – расстояния от центра тяжести поворотной и неповоротной частей крана до плоскости, проходящей через точки ребра опрокидывания; А1=3,8 м2; А2=9,6 м2,’2=2,3 м,»2=1,1 м – наветренные площади и расстояния от плоскости, проходящей через точки опорного контура до центров приложения ветровой нагрузки поворотной и неповоротной частей крана соответственно. Район установки крана II.

Решение Расчет ветровой нагрузки ведем по формуле (9.1) Динамическое давление ветра для нерабочего состояния крана выбираем по табл. 9.4. Для района II РФ=350 Па. Коэффициент аэродинамической силы с=1,2. Коэффициент к=1,00, так как наветренные площади крана расположены ниже уровня 10 м от поверхности земли. Коэффициент п=1,1.

Дальнейший расчет по алгоритму, приведенному в [9.1], показывает, что кран устойчив.

9.4. Определение расчетных параметров стропов и чалочных канатов

Строповку строительных конструкций производят по заранее разработанным схемам (рис. 9.2). Для подъема и перемещения крупногабаритных и длинномерных грузов применяют траверсы.

Чтобы определить технические данные гибких стропов, необходимо провести расчет (рис. 9.3).

Определяют усилие (натяжение) в одной ветви стропа

где S – расчетное усилие, приложенное к стропу, без учета коэффициента перегрузки и воздействия динамического эффекта, кН;

Q – вес поднимаемого груза, Н;

m – общее число ветвей стропа;

 – угол между направлением действия расчетного усилия стропа;

k – коэффициент, зависящий от угла наклона ветви стропа к вертикали (табл. 9.6):

Таблица 9.6

 , град

0

15

30

45

60

k

1

1,03

1,15

1,42

2

Рис. 9.2. Схемы строповки конструкций:

а – двухветвевым стропом; б – траверсой в двух точках; в – траверсой в трех точках с уравнительным роликом; г – траверсой в четырех точках с двумя уравнительными роликами; д – трехветвевым стропом; е – траверсой в четырех точках; ж – продольной и двумя поперечными траверсами в четырех точках; з – подъем вертикального элемента; и – подъем наклонного элемента; 1 – центр тяжести груза; 2 – траверса; 3 – ролик; 4 – строп;  – угол между стропом и вертикалью

Рис. 9.3. Схема для расчета усилий в ветвях стропа

Определяют разрывное усилие в ветви стропа

где kз– коэффициент запаса прочности для стропа, определяемый в зависимости от типа стропа.

По найденному разрывному усилию по табл. 9.7 подбирают канат и определяют его технические данные: временное сопротивление разрыву, ближайшее большее к расчетному, и его диаметр.

Таблица 9.7

Соперник ветра — журнал За рулем

Вот с каким противником автомобиль имеет дело. Приопустим стекло, подставим ладонь ветру — ощутимо давит? Если менять угол, под которым ладонь атакует ветер, можно обнаружить и вертикальную силу — как на крыле самолета.

Силы вертикального и поперечного направлений, дестабилизирующие машину, важны не меньше сопротивления. Кому понравится автомобиль, на 250 км/ч выходящий из-под контроля! Он должен быть устойчивым, не рыскать, не «соскальзывать» в поворотах, при порывах бокового ветра, разъезде со встречной машиной, въезде в тоннель и т. п. Да еще иметь просторный салон при небольших габаритах и при этом отвечать эстетическим требованиям дизайнеров! Полностью рассчитать его обтекаемость, заранее все увязать, увы, невозможно. Машину доводят в аэродинамической трубе, затрачивая огромные деньги.

Между тем, мода заставляет людей покупать сомнительные «прибамбасы», влияющие на аэродинамику. Сечение псевдокрыла часто совсем не похоже на крыльевой профиль: нарисовавший его дизайнер думал только об изяществе линий! К счастью, большинство «жертв рекламы» быстрее 160–180 км/ч не ездит — и действие какого-нибудь безграмотного «антикрыла» мало ощутимо. Если же автомобиль быстроходнее, неосторожные игры с аэродинамическими предметами чреваты печальными последствиями.

Даже серьезные фирмы не застрахованы от ошибок. Помните первые шаги » Ауди ТТ»? Не сразу его «научили» крепко держаться за дорогу. Но у такой фирмы побольше возможностей устранять промахи, чем у частного владельца — у него в списке «расходных материалов» может оказаться жизнь.

Вычислить прижимающую силу крыла не просто: не владея основами этой науки, автомобилисты, случается, спорят до третьих петухов. Поэтому приведем простой пример из параллельной области техники. У бомбардировщика В-1В площадь крыла 181 м2. Взлетный вес — 216 тонн. Самолет сверхзвуковой, но взлетает-то при скорости меньше 300 км/ч. Значит, каждый квадратный метр крыла несет груз в 1,2 тонны. Но некоторые спортивные автомобили ездят и быстрее, — так что их обтекатели, спойлеры, антикрылья инженеры «доводят» весьма дотошно. Хорошее антикрыло площадью всего треть квадратного метра способно создать прижимающую силу в четыре центнера, а то и больше.

Но иной «гонщик» может купить высокоэффективное антикрыло, а поставить его неправильно — например чрезмерно вынесет назад. На высоких скоростях передняя ось машины разгружается, автомобиль может стать неуправляемым. Утешает, что зачастую «крыло» помещают в зону срыва («аэродинамическую тень» кузова), где оно практически не работает.

ЗАКОН «КВАДРАТА»

К счастью для загадочной русской души автомобилей, делающих 300 км/ч, у нас мало. Зато хватает тех, которым по плечу 180–200. А мысль о том, что «обвешанный» автомобиль на такой скорости может не послушаться руля, иные головы никогда не посещает. Зря что ли деньги уплачены на зависть соседям!

«Проколы» обтекаемости заявляют о себе громко лишь на высоких скоростях. Силы сопротивления воздуха растут пропорционально квадрату скорости потока — V2. Ведь затормаживая поток (например, плоским щитом, как на рис. 2), мы переводим его кинетическую энергию в дополнительное статическое давление. При плотности воздуха 1,3 кг/мз повышение давления от торможения потока («скоростной напор») составит 1,3.V2/2=0,65V2 Н/м2.

Чтобы определить силу давления потока на щит (то есть аэродинамическое сопротивление), остается лишь умножить полученное давление на площадь щита S. 

Допустим, S=1,8 м2 (лобовая площадь сопротивления «Жигулей»). Тогда скоростям 50, 100, 150 и 200 км/ч соответствуют силы сопротивления 226, 903, 2031 и 3611 Н — закон «квадрата». Удвоив скорость,учетверяем силу.

Кстати, определение величины S (рис. 1) — не самая простая задача. Делают это с очень высокой точностью на лазерном стенде.

Квадратичная зависимость аэродинамической силы от скорости потока порой вводит нас в заблуждение. Например, проехав по маршруту туда и обратно со скоростью 90 км/ч, вы забыли о слабом (20 км/ч) ветре, дующем вдоль трассы. Но в одном случае поток бьет в лоб машине со скоростью 70 км/ч, а в другом — 110 км/ч! Силы сопротивления пропорциональны квадрату скорости, а мощность на ведущих колесах — кубу. В итоге средний расход топлива больше, чем при скорости 90 км/ч в штиль. Ни дать ни взять — бензин, унесенный ветром!

Управляя автомобилем, объективно оценить силу и направление ветра, дующего над дорогой, трудно. Общее правило: встречный ветер отнимает больше, чем «дает» попутный той же силы.

НЕ ТОЛЬКО «ЦЕ-ИКС»

Только ли скоростным напором определяется аэродинамическая сила? Оказывается, нет! Огромную роль играет форма тела, подставленного потоку (рис. 2). Встретив щит, воздух не станет бесконечно скапливаться перед ним (а) — он пойдет в обход препятствия, образуя за ним вихри (б). Дополнительные движения струй требуют затрат энергии, и аэродинамическое сопрот

Давление ветра. Физика на каждом шагу

Давление ветра

Когда ветер, т. е. движущийся поток воздуха, встречает преграду, он оказывает на нее давление большее, чем 1 кг на квадратный сантиметр. Давление воздуха на эту преграду спереди и сзади в таких случаях не уравновешивается, и избыток давления со стороны ветра стремится сдвинуть преграду с места. Это усилие и имеют в виду, когда говорят о «давлении ветра».

Величина давления ветра на обдуваемую им поверхность зависит от его скорости, от его «силы». Слабый ветер давит на квадратный метр поверхности, поставленной под прямым углом к нему, с силою 4–5 кг, сильный ветер – до 30 кг, шторм – до 75 кг. Нетрудно рассчитать, что, например, на радиомачту в 4 м высоты и 5 см толщины сильный боковой ветер давит с силою 6 кг, а шторм – 15 кг. Вы легко можете вычислить также, что на телеграфную проволоку длиною 50 м и толщиною 4 мм сильный ветер оказывает давление в 4 кг, а телеграфный столб высотою 8 м и поперечником 25 см шторм стремится опрокинуть с силою 150 кг.

Интересно подсчитать, что сильнее: давление урагана или рабочее давление пара в цилиндре паровой машины? Как ни странно, но пар оказывает во много раз большее удельное давление, чем самый сильный ураган. Действительно, ураган давит с силою 300 кг на 1 м2. Это составляет на 1 см2 в 10 000 раз меньше, т. е. 3/100 кг. Давление же пара, увлекающее цилиндр в движение, достигает десятков килограммов на 1 см2, а в новейших машинах еще больше. Следовательно, на одну и ту же площадку работающий пар давит в сотни раз сильнее, чем самый опустошительный ураган.

Если движущийся воздух сильно давит на встречное тело, то и спокойный воздух оказывает значительное давление на быстро движущееся тело. Это и есть причина того, что называют «сопротивлением воздуха».

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

При какой скорости ветер считается опасным? Инфографика | Инфографика

Россияне до сих пор не могут забыть погодные аномалии, обрушившиеся на многие регионы перед самым началом календарного лета: ураган, пронесшийся по Москве, обернулся не только серьезным материальным ущербом — пострадали и погибли люди. Штормовые предупреждения с начала лета объявляли в десятках областях страны.

Июнь оказался не только холодным, но еще и очень дождливым месяцем. Во многих областях были зафиксированы новые рекорды по суточному количеству осадков. Согласно прогнозам метеорологов, ясной и теплой погоды в целом по стране в ближайшее время не предвидится.

По словам специалистов, такая погода в России вызвана холодными воздушными массами, которые наступают на страну с севера и пока эта тенденция остается неизменной.
Завершают картину погодных аномалий 2017 года крепкие ветра, которые постоянно обрушиваются на различные регионы.

«Для большей части России нехарактерна ветреная погода, — говорит метеоролог Александр Нечаев. — В средней полосе скорость ветра обычно не превышает 5-10 метров в секунду. Инфраструктура и объекты недвижимости не рассчитаны на такие ветровые нагрузки, поэтому мощные порывы ветра — свыше 20 метров в секунду — для россиян сродни стихийному бедствию. Принято считать, что скорость ветра свыше 33 метров опасна и способна вызвать значительные разрушения. Но существуют и исключения. Например, двухметровые заборы из листового металла из-за огромной парусности начинают падать при ветре в 20-25 метров в секунду. Также при такой скорости ломаются ветви деревьев, что может стать причиной травмы».

МЧС регулярно рассылает СМС с информацией о штормовых предупреждениях, вот только разобраться в том, насколько погодные условия будут неблагоприятны, исходя из цифр, может далеко не каждый. 

SAMARA.AIF.RU предлагает вспомнить Шкалу Бофорта, по которой Всемирная метеорологическая организация оценивает скорость ветра и его разрушительную силу. Какой ветер считается бурей, а какой — ураганом — в нашей инфографике. 

Кликните, чтобы развернуть инфографику на весь экран

Смотрите также:

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *