Клапан сердца механический – ГОСТ 26997-2002 Клапаны сердца искусственные. Общие технические условия (с Поправкой), ГОСТ от 29 апреля 2003 года №26997-2002

Содержание

Сравнение биологических и механических протезов клапанов сердца

Какой клапан лучше?

Протезирование клапанов сердца решает проблему восстановления правильной циркуляции крови в нем и предупреждает развитие сердечной недостаточности. Как правило, протезы клапанов имплантируются, если выполнить реконструктивную пластику собственного клапана пациента невозможно из-за выраженного повреждения его элементов или подклапанных структур.

Идеальный протез клапана должен:

  • бесперебойно функционировать в течение всей жизни пациента;
  • вызывать минимум осложнений;
  • не снижать качество жизни, в том числе постоянным приемом требующей регулярного контроля антикоагулянтной терапии;
  • не влиять негативно на остальные структуры сердца.

К сожалению, из десятков модификаций механических и биологических протезов, ни одна не отвечает в полной мере этим требованиям. Как механические, так и биологические протезы имеют преимущества и недостатки, которые врач должен учитывать, делая выбор для конкретного пациента. Основные различия механических и биологических протезов клапанов заключаются в следующем:

Характеристики протеза и особенности клинической ситуации

Механические протезы

Биологические протезы

  Срок службы

более 20 лет

до 15 лет, отдельные модификации у пациентов старше 60 лет – до 25 лет

  Необходимость в повторной операции для замены протеза

отсутствует, если не возникли осложнения

присутствует через определенное время, в зависимости от скорости деградации

  Выживаемость через 10-15 лет

выше

ниже в связи с высокой частотой ревизионных повторных операций, при которых смертность в 2 раза выше, чем при первичной

  Риск тромбоэмболических осложнений

высокий

низкий

  Необходимость в пожизненной антикоагулянтной терапии

да

как правило, нет. Часто антикоагулянты назначаются в первые 3 месяца после операции, а дольше – только при высоком риске тромбоза, например, из-за фибрилляции предсердий

  Невозможность регулярного лабораторного контроля пожизненной антикоагулянтной терапии один раз в 5-14 дней для коррекции доз препаратов

имплантация противопоказана

имплантация показана

  Риск кровотечений

высокий

низкий

  Возраст пациента

до 60 лет

после 60 лет

  Непереносимость или противопоказания к применению антикоагулянтов

не имплантируют

имплантируют

  Влияние на форменные элементы крови и белки плазмы

негативное

отсутствует

  Сопротивление потоку крови

высокое, повышающее нагрузку на сердце

низкое, не повышающее нагрузку на сердце

  Склонность к инфицированию

более низкая

более высокая, за исключением отдельных модификаций

  Планирование беременности после протезирования клапана

не имплантируют

имплантируют

Исходя из этих позиций, складывается общемировая статистика протезирования клапанов сердца – имплантируется приблизительно 2/3 механических и 1/3 биологических протезов. Причем в странах, где большинству пациентов невозможно обеспечить качественный мониторинг антикоагулянтной терапии, а также в возрастных группах пациентов старше 60 лет – ситуация прямо противоположная.

Важно, что технологии протезирования клапанов сердца непрерывно прогрессируют. Так, профессор Даниэль Битран, возглавляющий Кардиохирургический центр больницы Шаарей Цедек в Иерусалиме, подчеркивает, что там применяются биологические протезы клапанов нового поколения, срок службы которых может достигать 25 лет, если они имплантированы пациентам старше 60 лет, когда скорость их деградации снижается. В этой клинике, а также в Немецком кардиоцентре в Берлине применяются бесшовные и бескаркасные биопротезы клапана аорты.

Бескаркасные клапаны отличаются великолепной приживаемостью, низким риском инфицирования и являются лучшим выбором при разрушении корня аорты, эндокардите, абсцессе этой области. Бесшовные биопротезы могут имплантироваться с помощью катетерной технологии (TAVI), эффективны при выраженном кальцинозе аорты, у пациентов с высоким хирургическим риском.

Некоторые принципы выбора протезов клапанов сердца и ведения пациентов с ранее установленными клапанами в особых клинических ситуациях:

 Клиническая ситуация

 Механический протез

 Биологический протез

 Наступление беременности, которую пациентка желает сохранить, при уже установленном протезе

 Непрерывный контролируемый прием прямых или непрямых антикоагулянтов с учетом профилактики пороков плода до 36-й недели, далее – перевод на нефракционированный гепарин

 Как правило, молодым женщинам биологические протезы не имплантируют, но если он был все же установлен, врач имеет больше возможностей ограничения приема антикоагулянтов, нежелательных для плода

 Протезирование у детей и подростков

 Показан

 Противопоказан

 Протезирование у молодых людей 25-35 лет

 Показан

 Относительно противопоказан

 Необходимость в постоянном гемодиализе

 Индивидуальный подход с учетом повышенного риска инсультов и кровотечений

 Индивидуальный подход с учетом высокой скорости деградации протеза, по сравнению с пациентами без гемодиализа

 Протезирование трикуспидального клапана

 Высокий риск тромбоза из-за низкого давления и медленного кровотока

 Низкий риск тромбоза и медленная деградация по сравнению с биопротезами в аортальной и митральной позициях

Даже по столь краткому анализу можно судить о том, насколько сложен оптимальный выбор механического или биологического протеза сердца, сколько принципиально важных вопросов приходится решать врачу, взвешивая предпочтительность имплантации той или иной модели применительно к конкретной клинической ситуации. Поэтому пациенты ведущих кардиохирургов мира в Кардиохирургическом центре больницы Шаарей Цедек в Иерусалиме и Немецком кардиоцентре в Берлине имеют преимущества еще на предоперационном этапе, так как им гарантирован индивидуальный подход и всесторонне взвешенное решение, в обязательном порядке согласованное с ними.

результаты исследования шведских ученых / Habr

Шведские ученые из Каролинского института выяснили, что механические сердечные клапаны более надежны, чем биологические. Статья шведских ученых с результатам исследований уже опубликована в European Heart Journal, а само исследование может иметь важное значение, поскольку протезирование сердечных клапанов за последние годы становится все более востребованной хирургической операцией. При этом чаще всего используются биологические клапаны.

Клапан какого рода должен использоваться при проведении операций для относительно молодых пациентов, механический или биологический? Этот вопрос активно обсуждается врачами и учеными последние несколько лет. Для ответа на вопрос специалисты провели обследование 4500 шведских пациентов с искусственным аортальным клапаном. Возрастная группа пациентов — 50-69 лет.


Как оказалось, пациенты с механическим клапаном имеют лучшую статистику по смертельным случаям (т.е. выживает и продолжает жить больше пациентов) чем пациенты, которым установили биологический протез. Тем не менее, в Швеции и по всему миру за последние несколько лет именно биологические протезы клапана стали очень популярными. У механических протезов популярность гораздо ниже.


Механический сердечный клапан более надежен? Похоже, что так

Кроме уровня смертей у пациентов с искусственными клапанами ученые проверили и другие статистические данные. Как оказалось, пациенты с биологическими протезами чаще проходили повторные операции по замене аортального клапана, правда, риск кровотечения у этой категории пациентов ниже.

Каждый год во всем мире операцию по замене сердечного клапана делают около 280000 пациентов. Механические протезы более прочные, и служат дольше, но пациентам нужны специальные медицинские препараты, которые они вынуждены принимать всю оставшуюся жизнь. Биологические протезы обычно делают из тканей коров или свиней.

«Биологические клапаны более востребованы, поскольку пациентам с такими клапанами не приходится принимать всю жизнь специальные препараты для разжижения крови. Тем не менее, наши данные говорят о том, что механические протезы клапанов должны чаще использоваться молодыми пациентами», — сообщила Натали Глейзер, представитель команды исследователей.

Искусственный клапан сердца

Искусственный клапан сердцаИскусственный клапан сердца устанавливается при нарушении деятельности одного из 4 клапанов органа, например, при сужении или чрезмерном расширении сердечных отверстий.

Он представляет собой протез, при помощи которого поток крови направляется в правильное русло, при этом прерывистым образом перекрывается устье венозных и артериальных сосудов.

При грубом изменении створок клапана, из-за чего явно нарушается кровообращение, врачи назначают установление искусственного.

Существует 2 вида сердечных клапанов:

  • механический;
  • биологический.

Врождённый порок сердца у младенцевПоказаниями для проведения операции могут стать следующие заболевания:

  1. Врожденный порок сердца у младенцев.
  2. Ревматические заболевания.
  3. Изменения в системе работы клапанов вследствие ишемических, травматических, иммунологических, инфекционных и других причин.

Механические и тканевые клапаны сердца

Клапаны сердцаМеханические искусственные клапаны сердца — это альтернатива естественным. Сердечная мышца — один из главных органов человека, она имеет сложное строение:

  • 4 камеры;
  • 2 предсердия;
  • 2 желудочка, которые имеют перегородку, она, в свою очередь, делит их на 2 части.

Клапана имеют следующие названия:

  • трехстворчатый;
  • митральный клапан;
  • пульмональный;
  • аортальный.

Все они выполняют одну главную функцию — обеспечивают ток крови без препятствий через сердце по малому кругу к остальным тканям и органам. Ряд врожденных или приобретенных заболеваний может нарушить привычную циркуляцию.

Механический клапан сердцаОдин или несколько клапанов начинают работать хуже, это приводит к стенозу или к сердечной недостаточности.

В этих случаях на помощь приходят механические или тканевые варианты. Чаще всего коррекции подвергаются участки с митральным или аортальным клапаном.

Механический клапан сердца имеет очень большой срок службы. Но при этом необходимо пожизненно принимать антикоагулянты — препараты для разжижения крови — и регулярно осуществлять контроль за ее состоянием. Благодаря этим медикаментам в сердечной полости не образуются тромбы.

Механические клапаны сердца состоят из следующих материалов:

  1. Распорки и обтураторы — изготовлены либо из пиролитического углерода либо из него же, но покрытого еще и титаном.
  2. Подшитое кольцо — изготавливают его из тефлона, полиэстера или дакрона.

Биологические клапаны сердцаБиологические варианты не требуют дополнительного приема медикаментов. Благодаря своим гемодинамическим свойствам эритроциты повреждаются в меньшей степени, а значит, снижается риск образования тромбов.

Но в то же время тканевый служит ограниченное количество времени. Обычно они изготовлены из тканей клапанов сердца свиньи, продолжительность работы биологического клапана составляет 15 лет в среднем, после чего требуется их замена.

Изнашивание его зависит от возраста больного и его здоровья.

Чаще у молодых пациентов срок службы тканевого клапана меньше. С возрастом его изнашивание замедляется, так как человек уже не ведет столь активный образ жизни.

Аортальное протезированиеПеред операцией пациент вместе с врачом решает, какой клапан установить в каждом конкретном случае. Иногда принимается решение об операции с сохранением собственного.

Для этого разрабатываются методы протезирования митрального и аортального клапанов. Когда используются собственные ткани для коррекции, в этом есть свои преимущества.

Во-первых, это позволяет избежать постоянной антикоагуляции, необходимой при установлении механического клапана. Во-вторых, при биологическом клапане снижается риск быстрого износа протеза.

Возможные осложнения

Если клапаны сердца (искусственные) установлены своевременно, то осложнения, как правило, не возникают. В других случаях чаще возникают проблемы при несоблюдении рекомендаций врача после операции, нежели в момент, когда она производится.

После хирургического вмешательства пациент должен придерживаться всех правил реабилитационного периода. А именно соблюдать режим дня, сидеть на определенной диете и принимать соответствующие медикаменты.

ТромбоэмболияТолько в этом случае человек даже с искусственным клапаном способен прожить долгую и жизнь без проблем со здоровьем.

Эти люди находятся в зоне риска такого заболевания, как тромбоэмболия. От того, насколько успешно ведется борьба с тромбозами, зависит дальнейшее существование человека.

Тромбоэмболические осложнения реже возникают у людей с биологическим сердечным клапаном. Но так как он имеет свои недостатки в плане срока службы, устанавливают такие нечасто и в большей степени пожилым пациентам.

У некоторых пациентов операция по ряду причин может вообще не проводиться. Так, противопоказанием для установления искусственного клапана могут стать следующие обстоятельства:

  1. Тяжелое поражение легких, печени или почек.
  2. Наличие в организме больного очага инфекции любой локализации (тонзиллита, гайморита, холецистита, пиелонефрита и даже кариозных зубов). В этом случае после операции может развиться инфекционный эндокардит.

Полное обследование организмаПоэтому перед вмешательством рекомендуется пройти полное обследование и провести лечение всех хронических недугов. Только через месяц после удаления больного зуба можно помещать пациента в хирургическое отделение и проводить установку протеза.

При других оперативных вмешательствах это сделать придется лишь через 3 месяца. В настоящее время все чаще применяются малоинвазивные методы операции. Реабилитационный период при этом сокращается почти вдвое.

Как живется после операции?

Жизнь с искусственным клапаном сердца сводится к тому, что необходимо отслеживать, чтобы не развились тромбоэмболические осложнения. Люди после операции должны придерживаться ряда правил:

  1. ВарфаринПостоянный прием противотромбных препаратов, чаще всего это непрямые антикоагулянты (варфарин).
  2. Отказ от деятельности, которая предполагает активные движения, с целью избегания травм. В особенности это касается острых, режущих предметов.
  3. Постоянный контроль над качеством свертываемости крови.

После операции на протяжении 6 месяцев человек не должен подвергаться тяжелым физическим нагрузкам. Немаловажен водно-солевой режим, предполагающий ограничения в приеме поваренной соли.

В зависимости от того, по какой причине проводилась операция, назначаются дополнительные медикаменты с целью послеоперационного восстановления. Порой люди задаются вопросом, сколько можно прожить с искусственным клапаном. Однозначного ответа нет. Все зависит от индивидуальных особенностей пациента, его возраста и образа жизни.

Врачи выявили среднюю продолжительность жизни человека с искусственным сердечным клапаном, она составляет 20 лет. Сам же протез может прослужить и до 30 лет. Он не имеет свойств удлинять или укорачивать жизнь больного.

Часто люди с таким приспособлением, прожив 20 лет, умирают совершенно от других причин, не связанных с сердечным заболеванием.

Профилактика тромбоэмболии

Чтобы не развилось подобное осложнение, врач назначает постоянный прием антикоагулянтов. Если операция прошла без проблем, то терапия назначается на вторые сутки, чаще всего это гепарин, который вводится от 4 до 6 раз в день.

ГепаринНа 5 сутки дозы гепарина снижают и вводят непрямые антикоагулянты. По достижении нужного протромбинового индекса гепарин отменяется вообще.

Врач обязан подробно рассказать пациенту об антикоагулянтных препаратах, так как они должны правильно сочетаться с потребляемой пищей. Данные лекарства могут не сочетаться с другими либо их действие снижается. Это тоже необходимо учесть. При любых нарушениях в состоянии пациента необходима помощь врача.

Гепарин

Операция на сердце. Какой клапан выбрать: биологический или механический?


 Часто пациенты задают такой вопрос — а какой клапан мне иплантируют — механический или биологический?
 В чём же на самом деле разница и от чего всё зависит?

Многое зависит от возраста. И вообще я постараюсь писать здесь о взрослых пациентах, т.е. кому от 14 лет и старше.
А также зависит от того, в какой позиции Вам требуется имплантация клапана: в аортальной, митральной или трикуспидальной?

Если у Вас поражён трикуспидальный клапан в любом возрасте, то в 95% Вам имплантируют биологический клапан. Почему? Известно, что клапаны готовят из бычьего, свинного перикарда или используют трупные человеческие ткани (т.е. аллографты). Биологический клапан в любом случае представляет собой кусок мёртвой ткани специально обработанный, и такая ткань естественно не регенирируется, т.е. в случае повреждения не восстанавливается. Поэтому биологические клапаны не долговечны. Как известно, сердце работает 24 часа в сутки, и в каждой камере сердца создаётся определённое давление, которое в свою очередь ведёт к нагрузке на клапан. Минимальное давление — в правом желудочке, до 25 мм рт.ст. и поэтому имплантация биологического клапана в эту позицию является наиболее предпочтительным вариантом. Имплантация механического клапана в эту позицию проводится при определённых исключительных случаях, но она не желательна, из-за того, что приём антикоагулянтов (препаратов для разжижения крови) не приводит к желаемому эффекту, т.е. препятствию тромбообразования. Так как кровь проходит через всю систему вен, в т.ч. печеночных, где часть препарата просто утилизируется, и почечных сосудов. Таким образом, концентрация препарата в венозной крови, которая поступает в правые отделы и трикуспидальному клапану, в разы меньше содержания препарата в артериальной крови.

При поражении митрального и аортального клапанов часто имплантируют механические клапаны. Однако, часто молодым девушкам имплантируют биологические, хотя известно, что биологические прослужат до 25 лет. Почему? Да потому, что при имплантации биологического клапана не требуется длительный приём антикоагулянтов, а каждая девушка готовиться вскоре быть матерью и вовремя беременности не желателен приём антикоагулянтов. При имплантации биологического клапана их принимают обычно полгода. Исключение составляет категория пациентов с нарушениям ритма, по типу мерцательной аритмии (фибрилляции предсердий), которым антикоагулянты показаны длительное время во избежания тромбообразования в левом предсердии и на самом клапане.

Пациентам старше 60 лет также имплантируют биологические клапаны.

Всем остальным желательна имплантация механического клапана. Единственным неудобством для пациентов с механическими клапанами является пожизненный приём антикоагулянтов под контролем МНО или ПТИ. Но следует знать, что современный механический клапан, при правильном подборе и постоянном приёме антикоагулянтов, прослужит Вам долгую жизнь.

Некоторые задаются вопросом — все ли биологические или механические клапаны качественные? — Отчечу — ДА!
Меня часто спрашивают, какие клапаны лучше — зарубежные или отечественные? Дело в том, что российские разработчики клапанов делают их хорошо, но зарубежные лучше. Это, к сожалению во всём. Что Вы возьмёте — новую Ладу Калину или новый Мерседес? Многие выберут второй вариант, хотя первый вариант тоже не плох, — на ней можно ездить, она тоже новая, но… Вот так и с клапанами.
Поэтому, если Вам не нужно продавать последнее и у Вас есть запас денег, лучше конечно имплантировать импортный протез, но если денег нет, то не следует горевать, главное соблюдать все указания, которые даёт лечащий врач. Соблюдение всех указаний не менее важно, чем имплантация того или иного клапана. Не буду писать, какие клапаны из зарубежных лучше, и какие из отечественных лучше, — у всех есть свои минусы и плюсы. Из российских биологических, я бы выбрал Кемеровские и Бакулевские, другие я бы никогда не купил. Из механических — двустворчатые клапаны — Мединж, и никакие больше. Обычно отечественные клапаны имплантируются по квоте. Что же касается импортных — из биологических трудно выбрать, все хорошие, а вот из механических я бы предпочёл — ATC и On-X. Первые отличаются своей бесшумностью, т.е. их тикания практически не слышно, а вторые большей резистентностью к густой крови при невозможности быстрого подбора антикоагулянтов. Но препараты надо принимать ВСЕГДА! И какой бы механический клапан Вы бы не имплантировали, весь труд хирурга пойдёт на смарку, если Вы не будете соблюдать правильный приём антикоагулянтов.
Следует знать, что имлантация импортного клапана производится за отдельную плату. Вы обговариваете своё пожелание с хирургом, и оплачиваете в кассу больницы, и будьте спокойны, Вам уже на операции имплантируется импортный клапан. Так происходит как в России, так и за рубежом. Но! Не всегда Вам в России имплантируют тот или иной желаемый импортный клапан. Выбор за хирургом! Во-первых зависит от размеров фиброзного кольца в сердце, конфигурации Вашего сердца и….И зависит от того, с какой зарубежной компанией у хирурга (реже у клиники) имеется договорённость. Да, и ещё, следует обговрить, какой будет шовный материал, если н не входит в стоимость импортного клапана, лучше уже и его оплатить.

За рубежом в стоимость лечения входит ВСЁ! Но цены на порядок выше, не за клапани шовный материал, а уже за выполнение самой операции. Хотя непосредственно протез и шовный материал стоит в два раза, а то и в три, дешевле. За рубежом дороже обходятся услуги врачей, а не лекарств и протезов. Вот и всё отличие от российской медицины. 
Если Вы намылились за рубеж, то все исследования диагностические лучше пройти здесь, так как за рубежом они дороже. А уже операцию выполнить за границей при наличии необходимых результатов исследований. 

И если у Вас возникнут вопросы по операции на сердце в одной из самых лучших клиник по качеству лечения в Европе (Denmark) — пишите, всем отвечу — [email protected]

телефоны в Москве: 8(926)8856545  
Берегите здоровье, лечите сердце в лучших клиниках Европы с разумной экономией денег…!

Шаровые протезы клапана сердца — Википедия

Разные типы шаровых клапанов: 1—2. Starr-Edwards; 3. Smeloff-Cutter

Шаровые протезы клапанов сердца относятся к группе осесимметричных механических искусственных клапанов сердца вентильного типа. Шаровые клапаны имеют корпус с седлом и пришивной манжетой, запирающий элемент в виде шара, и ограничители хода (стопы), связанные с корпусом. Под действием разницы давления в сердечных камерах, разделённых протезом, шаровой элемент или отходит от седла на расстояние, определяемое ограничивающими ход стопами, или примыкает к седлу, препятствуя регургитации крови.

Шаровые клапаны были наиболее распространены в 60—70 годах XX века (несколько сотен тысяч имплантаций). Более чем тридцатилетние отдалённые результаты позволяют использовать шаровые клапаны в качестве стандарта для оценки протезов других конструкций.

Экспериментальный клапан C. A. Hufnagel из коллекции National Museum of Health and Medicine

Впервые вентильный тип протеза клапана сердца (шаровой) применил в эксперименте в 1951 году Чарлз Хафнейджел (англ.)русск. из Джорджтаунского университета[1]. Протез состоял из корпуса с двумя трубчатыми частями и расширенного отдела между ними, внутри которого находился шарик из метилметакрилата. Первая имплантация была выполнена 11 сентября 1952 года в университетской клинике. Поскольку конструкция не позволяла фиксировать протез на месте удалённого клапана сердца, то фиксация осуществлялась в нисходящей аорте ниже отхождения левой подключичной артерии, с сохранением естественного клапана. При этом регургитация крови уменьшалась на 70 %, а кровообращение улучшалось только дистальнее места его имплантации. С 1960 года от применения этих протезов отказались по причине нерадикальной коррекции порока и в связи с появлением новой модели шарового протеза.

В марте 1960 года D. E. Harken из Boston City Hospital сообщил об успешной замене аортального клапана самостоятельно сконструированным протезом[2]. Его корпус и ограничители хода запорного элемента (четыре соединяющихся у вершины протеза стойки) были выполнены из нержавеющей стали, а шарик — из силиконовой резины. Дополнительно имелся второй, наружный ряд стоек для предотвращения контакта шарика со стенками аорты. Манжета для подшивания протеза к внутренней поверхности аорты на месте удалённого клапана выполнялась из поливинилалкоголя. Особенностью конструкции был треугольный лоскут, отходящий от манжеты на протяжении полуокружности (из того же материала), который вшивали в разрез стенки аорты для расширения её надклапанной части, что способствовало свободному кровотоку. Позже был разработан аналогичный протез для митральной позиции[3].

Экспериментальный клапан C. A. Hufnagel из коллекции National Museum of Health and Medicine Митральный клапан Starr—Edwards

В том же году А. Старр (англ.)русск. и M. L. Edwards предложили свой вариант митрального клапана. Конструктивными особенностями протезов Starr—Edwards являлись пластиковое седло и выполненные из метилметакрилата четыре ограничителя хода силастикового шара, соединённые у вершины протеза. Манжета крепления в первых моделях представляла собой двойной силиконовый диск, надеваемый на фиброзное кольцо. Первая имплантация протеза состоялась 25 августа 1960 года[4]. В поздних моделях запирающий шар был или литым из силикона, или пустотелым из стеллита (stellit-21), опорное кольцо и ограничители хода — из титана, пришивная манжета — из тефлоновой ткани. В 1962 году этими же разработчиками был предложен аортальный клапан, отличающийся числом титановых ограничителей хода шара — их было три, по числу комиссур, в области которых они и располагались при фиксации. Тогда же в просвете седла появились три упора, что позволило использовать запирающие элементы меньшего диаметра, сохранив герметичность закрытия проходного отверстия. С 1965 года была введена обшивка опорного кольца пористой синтетической тканью.

Дальнейшее совершенствование базовой конструкции шарового клапана (шаровой запирающий элемент в металлической клетке из ограничительных стоек на опорном кольце) проводили с целью уменьшения тромбообразования. Так, в 1962 году R. S. Cartwright указал, что интенсивные возмущения потока возникают в области соединения ограничительных стоек, и предложил модель клапана с разомкнутыми стойками[5].

В 1961 году хирурги E. Smeloff, R. S. Cartwright и механики T. Davey, B. Kaufman из Калифорнийского университета начали собственную разработку протеза. Его клиническое применение было начато в 1964 году. В созданной модели, названной по аббревиатуре фамилий авторов SCDK, использовалось седло с увеличенным гидравлическим отверстием, наряду с основными ограничителями хода имеющее ограничительные стойки с обратной стороны для предотвращения заклинивания шара. Шар изготавливался из силикона, корпус — из титана, манжета — из тефлоновой ткани. Быстрое разрушение силиконового шара удалось предотвратить методом вулканизации материала, проводимой в Cutter Laboratories, после чего модель получила наименование Smeloff—Cutter. Её первое клиническое применение относится к 1966 году[6].

В середине 1960-х годов проблемой заклинивания шара в седле протеза из-за набухания (вызванного абсорбцией липидов из плазмы крови в силиконовый материал) заинтересовался М. Э. Дебейки. Первоначально, совместно с H. Cromie, он предложил клапан с полым титановым шаром и дакроновым покрытием стоек[7]. Вторая модель, получившая наименование DeBakey—Surgitool, имела титановые седло и стойки, покрытые высокомолекулярным полиэтиленом[8]. В модели, разработанной совместно с J. Bokros, корпус покрывали пиролитическим углеродом, а в 1969 году из этого материала был создан и шаровый запирающий элемент, однако в 1978 году клиническое использование модели было прекращено из-за повышенного гемолиза.[9].

Разработка и производство[править | править код]

В СССР создание шарового клапана сердца по инициативе хирургов Б. П. Петровского и Г. М. Соловьёва из клиники госпитальной хирургии им. А. В. Мартынова 1-го ММИ им. И. М. Сеченова Минздрава СССР начали в 1962 году специалисты Кирово-Чепецкого химического завода во главе с главным инженером Б. П. Зверевым.

Разработка и изготовление принципиально нового оборудования для выпуска искусственных клапанов осуществлялись заводской экспериментальной механической лабораторией (ЭМЛ), руководимой С. В. Михайловым. Отечественные шаровые клапаны были созданы: для митральной позиции — менее чем за год, для аортальной — в 1964 году. 23 мая 1966 года для организации серийного производства протезов сердечных клапанов на базе ЭМЛ было создано Особое конструкторское бюро медицинской тематики (ОКБ (мед.)). Начатое в 1963 году с выпуска единичных экземпляров, производство в 1964—1965 годах достигло 10—15 протезов в месяц, а за 1966 год выросло до 353 изделий в год.

В 1967 году Минздравом СССР были определены хирургические центры для проведения имплантаций протезов, освоенных в серийном выпуске, в числе которых оказались хирургические НИИ и клиники в Москве, Ленинграде, Киеве, Каунасе, Вильнюсе, Горьком, Куйбышеве, Новосибирске.

Среди разработанных ОКБ (мед.) многочисленных моделей шаровых клапанов в клинической практике применялись только шесть, производство лучших из них (митрального МКЧ-25, аортальных АКЧ-02, АКЧ-06) продолжалось вплоть до 1992 года.

Динамика производства шаровых клапанов (по данным КЧХК)

Год19701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992Всего
АКЧ-021442023132611542702374518917895304055357617999718605896297506205028311746
АКЧ-06430541128284304407455681766716810723534106315261149122288092670076059712015722
МКЧ-2544758174644282110751101122610931307117512181329159020052223124912881185115095041020024811
За год102113241187135915291792231727122952284426352456245434144330434333312757274026002330150940354339

В 1975 году, учитывая государственное значение производимой ОКБ (мед.) продукции, приказом министра среднего машиностроения СССР Б. П. Славского, оно было преобразовано в Специальное конструкторское бюро медицинской тематики (СКБ МТ), с большими правами в области межотраслевых связей, и правом реализации продукции в стране и за рубежом.

Особенности конструкций[править | править код]

Работа по созданию и совершенствованию искусственных протезов клапанов сердца (и, в частности, шаровых клапанов) проводилась в тесном взаимодействии с ведущими медицинскими научными центрами СССР.

Экспериментальный клапан C. A. Hufnagel из коллекции National Museum of Health and Medicine

Систематизацию данных о диаметрах сердечных устий человека после иссечения естественных клапанов была проведена старшим научным сотрудником НИИ клинической и экспериментальной хирургии Минздрава СССР, будущим академиком РАН и РАМН В. И. Шумаковым. Показанные в его докторской диссертации значения[10] легли в основу типоразмеров отечественных шаровых механических протезов клапанов сердца. Методика их определения была описана в кандидатской диссертации Ю. А. Перимова[11], с 1973 года ставшего начальником ОКБ (мед.) КЧХЗ. В возглавляемой Н. В. Добровой лаборатории по применению полимеров в сердечно-сосудистой хирургии Института сердечно-сосудистой хирургии было выполнено 600 экспериментов на стендовых установках, которые позволили установить оптимальное соотношение диаметров запираемых отверстий и шаровых элементов, которое для митрального клапана оказалось равным 0,78—0,8, а для аортального — 0,95—0,96[11].

Для создания шаровых запирающих элементов была выбрана резина на основе поливинилсиликонового каучука СКТВ-1. При организации её производства на КЧХЗ решили задачу очистки материала от механических примесей, определили рецептуру смеси и время введения и смешения ингредиентов, параметры вулканизации, методы контроля. Как показали исследования, эта резина была атромбогенна и биологически инертна, не смачивалась кровью и имела близкий к крови удельный вес.

Каркас клапана первоначально изготавливался из нержавеющей стали, а позднее — из имеющего меньший удельный вес и лучшую тромборезистентность титана марок ВТ-1-1, ВТ-1-0.

Для изготовления пришивной манжеты был выбран фторопласт-4, единственным производителем которого в СССР являлся Кирово-Чепецкий химический завод, что послужило и причиной его выбора в начале работ по созданию протезов клапанов сердца. Для переработки фторопласта-4 в трикотажную ткань и чёс был разработан оригинальный технологический процесс[12].

Экспериментальный клапан C. A. Hufnagel из коллекции National Museum of Health and Medicine

В 1963 году были изготовлены первые три типоразмера опытного шарового митрального клапана сердца МКЧ-01[13]. Протез состоял из корпуса в виде кольца, запирающего элемента (шара), ограничителей его хода (сомкнутых в вершине стоек) и манжеты. Со стороны, обращённой к шару, на кольце имелось свободное от обшивной ткани седло высотой 1,4 мм, плоскость которого с вертикалью составляла угол 45—47°: эти величины, подобранные экспериментально, позволяли увеличить диаметр гидравлического отверстия, не изменяя наружный размер кольца. Концы шести ограничительных стоек проводили через отверстия корпуса и крепили при помощи клёпки в паз корпуса (куда предварительно закладывали манжету, что обеспечивало её надёжное крепление).

Первый аортальный шаровый протез АКЧ-01 был разработан в 1964 году[14] в четырёх типоразмерах. Его корпус и три изогнутые ограничительные стойки составляли единое целое и выполнялись из нержавеющей стали. Дополнительно корпус имел три упора, препятствующие заклиниванию шара в седле. Пришивная манжета состояла из двух слоёв фторопластовой ткани, сшитых такой же нитью. Приданная ей форма усечённого конуса предохраняла от плотного облегания ограничительных стоек стенками восходящей аорты и улучшала условия кровотока. Стабильность конусной формы обеспечивалась полужёстким фторопластовым каркасом.

Результаты исследования гидродинамических характеристик первых шаровых клапанов и изучение зарубежного опыта позволили (в 1964 году) создать митральный протез МКЧ-02, в конструкции которого все металлические детали изготавливались из единой заготовки, а количество стоек было уменьшено с шести до четырёх. Стойки в сечении получили каплевидную форму, что значительно уменьшало сопротивление потоку крови, снижало завихрения и турбулентность. Они не были замкнуты у вершины для предотвращения образования тромбов в месте смыкания, а для уменьшения объёма корпуса были применены обратные ограничительные стойки, позволяющие расширить гидравлическое отверстие и предотвратить заклинивание шара. Сравнение геометрических характеристик митральных клапанов МКЧ-01 и МКЧ-02 с наиболее распространённым зарубежным аналогом (Starr-Edwards) показывает, что при равных наружных диаметрах площадь гидродинамических отверстий (а значит, и условия кровотока) у отечественных разработок значительно выше:

Наружный диаметр
протеза, мм
Диаметр гидродинамического отверстия, ммПлощадь гидродинамического отверстия
МКЧ-01St.-Edw.МКЧ-02МКЧ-01St.-Edw.МКЧ-02
3318,517,922,32,72,363,9
3520,518,825,53,92,774,98
3822,520,026,84,03,145,64
Экспериментальный клапан C. A. Hufnagel из коллекции National Museum of Health and Medicine

В 1967 году, после ряда экспериментальных модернизаций, в ОКБ (мед.) был разработан усовершенствованный протез МКЧ-25, выпускавшийся серийно с 1968 по 1992 годы. Корпус этого клапана изготавливался из титана марки ВТ-1-1 и имел четыре разомкнутых дужки каплевидного сечения. Корпус по всей поверхности был покрыт тканью из фторопласта-4 с величиной пор 0,5 мм (подтверждённой в эксперименте как оптимальной для прорастания соединительной тканью). Сам корпус имел перфорацию, позволяющую не только поверхностно охватывать его соединительной тканью, но и обеспечивать её сквозное прорастание. Шар изготавливался из силиконовой резины СКТВ-1 и имел удельный вес 1,05—1,15, что близко к удельному весу крови.

Экспериментальный клапан C. A. Hufnagel из коллекции National Museum of Health and Medicine

Параллельно была проведена работа по совершенствованию аортального клапана. Разработанный в 1964 году и выпускавшийся серийно с 1968 по 1992 годы клапан АКЧ-02 не имел обшивки внутреннего гидравлического отверстия, изготавливался из единой заготовки титана марки ВТ-1-1 с тремя каплевидными в сечении разомкнутыми стойками. Продолжающие их обратные ограничительные стойками позволяли создать большее гидравлическое отверстие и предотвратить заклинивание шара. Полужёсткий каркас конусной манжеты был заменён тонким кольцом из силиконовой резины. Используемая для формирования пришивной манжеты двухслойная фторопластовая ткань имела поры 0,5 мм.

Экспериментальный клапан C. A. Hufnagel из коллекции National Museum of Health and Medicine

В 1968 году в ОКБ (мед.) был создан шаровой протез АКЧ-06, выпускавшийся серийно с 1969 по 1992 годы. На его корпусе, полностью обшитом фторопластовой тканью, имелся паз для крепления пришивной манжеты. Высота стоек ограничителей хода шара была рассчитана так, чтобы в положении открытия клапана сечение потока крови между седлом и шаром равнялось гидравлическому отверстию седла. В остальном были использованы решения, применённые в модели АКЧ-02.

Работы по усовершенствованию шаровых конструкций не прекращались вплоть до начала 1990-х годов. В 1970-е годы были предложены экспериментальные модели МКЧ-44, АКЧ-08 и АКЧ-10Н с запирающим элементом в виде пустотелого титанового шара. В моделях МКЧ-44, АКЧ-14 корпус, включая стойки, полностью обшивался фторопластовой тканью, в модели МКЧ-53 для формирования манжеты был использован материал, в котором отсутствовал чёс (было установлено, что он не прорастает соединительной тканью).

Вместе с тем, в клинической практике использовались только серийные модели МКЧ-01, МКЧ-02, МКЧ-25, АКЧ-01, АКЧ-02, АКЧ-06.

Первые операции протезирования клапанов сердца шаровыми протезами типа МКЧ-01 и АКЧ-01 в СССР были проведены в НИИ клинической и экспериментальной хирургии Минздрава СССР Г. М. Соловьёвым: митрального клапана — в ноябре 1963 года, аортального — в феврале 1964 года[15].

Первые операции протезирования митрального клапана выполнялись из левосторонней торакотомии, левое предсердие вскрывалось параллельно левой венечной борозде. Створки клапана вместе с хордами и верхушками папиллярных мышц иссекались с оставлением пояска ткани шириной 2—3 мм у фиброзного кольца. Шаровой протез МКЧ-01 имплантировался 17 узловыми швами.

Протезирование аортального клапана проводилось из срединного транстернального доступа. Аорта вскрывалась поперечным разрезом, после иссечения створок клапана шаровой протез подшивался П-образными швами (вначале накладывали швы на остатки тканей клапана, затем проводили концы их нитей через манжету протеза[16].

Изменения методики вшивания искусственных протезов клапанов сердца, в основном, касались уменьшения числа и вида накладываемых швов: П-образных (8 — у Н. М. Амосова; 10—12 у Г. М. Соловьёва; 10—14 у Г. И. Цукермана), 8-образных (Ф. Г. Углов), узловатых (М. И. Бурмистров). В качестве прокладок использовался различный синтетический материал: полиэтиленовые перфорированные трубочки, фторопластовые тканые прокладки, фторопластовый войлок. Совершенствование конструкции протеза и техники проведения операций, метод искусственного кровообращения и кардиоплегии в конечном итоге привели к успехам: по данным В. И. Бураковского[17], отличные и хорошие результаты при протезировании митрального клапана через 10 лет после операции наблюдались у 72,5 % при госпитальной летальности 15,7 %; по данным Г. И. Цукермана, госпитальная летальность при протезировании аортального клапана в ИССХ им. А. Н. Бакулева АМН СССР составила 5,7 %, а выживаемость больных после протезирования протезами АКЧ-02 и АКЧ-06 к 10 году жизни составила 72,8 %[18].

Достоинства и недостатки шаровых клапанов[править | править код]

Основное достоинство шаровых протезов заключалось в их механической надёжности и долговечности[19][20], а также способности обеспечивать хорошую гемодинамику организма длительное время[21][22]. Переход к изготовлению шарообразного запирающего элемента из силикона сделал работу протеза в организме малошумной, что повысило комфортность жизни прооперированных пациентов. В отличие от лепестковых клапанов, шаровые при испытании на установках, имитирующих в единицу времени количество циклов, в десятки раз превышающие число сердечных сокращений человека, не претерпевали заметных изменений за период, эквивалентный нескольким десятилетиям работы сердца[4].

При этом, из-за значительной высоты протеза и большого объёма корпуса, шаровый клапан в митральной позиции может перекрывать выходной отдел левого желудочка (при его малом размере), ограничивая выброс кровотока[23]. С ростом частоты сердечных сокращений из-за инерционности шарового запирающего элемента, клапан открывается и закрывается не полностью, что повышает градиент давления и регургитацию[24]. Это способствует тромбозам клапанов, тромбоэмболиям и хроническому внутрисосудистому гемолизу, что требует пожизненной антикоагулянтной терапии. Известны случаи механической дисфункции шаровых протезов[25]: выскакивание шара из каркаса или его залипание в седле, липидная абсорбция[26] и дегенерация[27] применяемого силикона.

Всё это послужило причиной массового отказа на рубеже 1980—1990 годов от использования шаровых клапанов и подтолкнуло к поиску менее травматичных для больных малогабаритных конструкций.

  1. Hufnagel C. A. Aortic plastic valvular prosthesis / Bull. Geogretown Univ. Med. Cent. — 1951. — Vol. 5. № 1. — P. 128—130.
  2. Harken D. E., Soroff H. S., Taylor W. J. et al. A partical and complete prostheses in aortic insufficiency / J. Thorac. Cardiovasc. Surg. — 1960. — Vol. 40. № 6. — P. 744—762.
  3. Wagner E. Die Verwendung der «Caged-ball» Klappe fur den totalen Erzatz der Aorten- und Mitral-klappe / Thoraxchirurg. Vascular Chirurgie. — 1963. — Bd. 10. № 3. — S. 331—343.
  4. 1 2 Starr A., Edwards M. L. Mitral replacement: clinical experience with a ball-valve prosthesis / Ann. Surg. — 1961. — Vol. 154. — P. 726—740.
  5. Cartwright R. S., Giacobine J., Ratan R. et al. Combined aortic and mitral valve replacement / J. Thorac. Cardiovasc. Surg. — 1963. — Vol. 45. № 1. — P. 35—46.
  6. Lee S. J. K., Haraphongse H., Callaghan J. C. et al. Hemodynamic changes following correction of severe aortic stenosis using the Cutter-Smeloff prosthesis / Circulation. — 1970. — Vol. 42. № 4. — P. 719—728.
  7. Servelle M., Arbonville G. A ball valve prosthesis with a metalic ball / Surgery. — 1966. — Vol. 59. № 2. — P. 216—219.
  8. Butany J., Naseemuddin A., Nair V. et al. DeBakey Surgitool mechanical heart valve prosthesis, explanted at 32 years / Cardiovasc. Pathol. — 2004. — Vol. 13. № 6. — P. 345—346.
  9. Rodgers B. M., Sabiston D. C. Hemolytic anema following prosthetic valve replacement / Circulation. — 1969. — Vol. 39. № 5. — P. 155—161.
  10. Шумаков В. И. Протезирование клапанов сердца: Автореф. дис. …д-ра мед. наук — М., 1965. — 33 с.
  11. 1 2 Перимов Ю. А. Разработка и исследование конструкций искусственных клапанов сердца: Автореф. дис. …канд. тех. наук — М., 1973. — 24 с.
  12. Зверев Б. П., Терещенко Я. Ф., Ионин В. Н. и др. Способ получения нитей из фторопласта: Авт. св. № 177585, заявл. 20.04.1964, опубл. 18.12.1965 // Бюл. изобр. 1965 № 1.
  13. Зверев Б. П., Шумаков В. И., Ефременков А. А. и др. Шаровой протез митрального клапана: Авт. св. № 171082, заявл. 07.03.1964, опубл. 11.05.1965 // Бюл. изобр. 1965 № 10.
  14. Зверев Б. П., Шумаков В. И., Ефременков А. А. и др. Шаровой протез аортального клапана: Авт. св. № 169745, заявл. 07.03.1964, опубл. 17.03.1965 // Бюл. изобр. 1965 № 7.
  15. Соловьёв Г. М., Шумаков В. И. Протезирование клапанов сердца. / Труды XXVIII съезда хирургов. — М. 1967. — 632 с.
  16. ↑ Полное протезирование митрального клапана / Цукерман Г. И., Быкова В. А., Семеновский М. Л., Голиков Г. Т. // Грудн. хирургия. — 1968. — № 1. — С. 12—18.
  17. ↑ Хирургия сердца в СССР — основные достижения и некоторые перспективы / Бураковский В. И. // Грудн. хирургия. — 1977. — № 5. — С. 14—22.
  18. Цукерман Г. И., Семеновский М. Л., Быкова В. А. Протезирование аортального клапана. Достижения и проблемы / Материалы XV Науч. сессии, посвящённой 25-летию Ин-та серд.-сосуд. хирургии им. А. Н. Бакулева АМН СССР. 8 декабря 1981 г. — М. 1981. — 240 с.
  19. Clark R. E., Clark B. The clinical life history of prosthetic heartvalves / J. Thorac. Cardiovasc. Surg. (Torino). — 1981. — Vol. 22. № 2. — P. 441—443.
  20. Hayashi J. M., Nakazawa S., Eguchi S. et al. Long-term outcome of patients who received Starr-Edwards valves between 1965 and 1977 / Cardiovasc. Surg. — 1996. — Vol. 4. № 2. — P. 281—284.
  21. Morrow A., Oldham H., Elkins R. Prosthetic replacement of the mitral valve: preoperative and postoperative clinical and hemodynamic assessments in 100 patients / Circulation. — 1967. — Vol. 35. № 7. — P. 962—965.
  22. Bronchek L. I. Current status of cardiac valve replacement: selection of a prosthesis and indications for operation / Am. Heart. J. — 1981. — Vol. 101. № 1. — P. 96—98.
  23. Barnard C., Goosen C. Prosthetic replacement of the mitral valve / Lancet. — 1962. — Vol. 2. № 7219. — P. 25—28.
  24. Conkle D. M., Hannan H. H., Reis R. L. Effects of tachycardia on the function of the Starr-Edwards mitral ball valve prosthesis / Amer. J. Cardiol. — 1973. — Vol. 31. № 1. — P. 105—107.
  25. Bonnabeau R. C., Lillehei C. W. Mechanical «Ball» Failure in Starr-Edwards prostheric valves / J. Thorac. Cardiovasc. Surg. — 1963. — Vol. 56. № 2. — P. 258—264.
  26. Carmen R., Mutha S. C. Lipid absorption by silicone rubber heart valve poppets — in vivo and in vitro results / J. Biomed. Mater. Res. — 1972. — Vol. 6. № 2. — P. 327—346.
  27. Roberts W. C., Morrow A. G. Total degeneration of the silicone rubber ball of the Starr-Edwards prostheric aortic valve / Amer. J. Biomed. Cardiol. — 1968. — Vol. 22. № 4. — P. 614—620.
  • Вербовая Т. А., Гриценко В. В., Глянцев С. П., Давыденко В. В., Белевитин А. Б., Свистов А. С., Евдокимов С. В., Никифоров В. С. Отечественные механические протезы клапанов сердца (прошлое и настоящее создания и клинического применения). — Спб: Наука, 2011. — С. 72—94. — 195 с. — 1000 экз. — ISBN 978-5-02-025450-3.
  • Орловский П. И., Гриценко В. В., Юхнев А. Д., Евдокимов С. В., Гавриленков В. И. Искусственные клапаны сердца. — Спб: ОЛМА Медиа Групп, 2007. — С. 47—58, 87—90. — 448 с. — 1500 экз. — ISBN 978-5-373-00314-8.

Искусственный клапан сердца — Википедия

Иску́сственный кла́пан се́рдца — это устройство для имплантации в сердце пациента с патологией сердечных клапанов.

При заболевании или дисфункции по причине патологии развития одного из четырёх клапанов сердца решением по восстановлению его работоспособности может быть замена естественного клапана на его протез. Как правило, это требует операции на открытом сердце.

Клапаны являются неотъемлемой частью нормального физиологического функционирования человеческого сердца. Естественные клапаны сердца развиваются в формы, которые функционально поддерживают однонаправленный поток крови из одной камеры сердца в другую.

Среди искусственных клапанов сердца выделяются механические и биологические конструкции. Соотношение имлантированных биоклапанов и механических протезов в последние годы составляет в мировой клинической практике 45 % и 55 % соответственно[1].

Механические искусственные клапаны сердца

Существующие модели механических искусственных клапанов сердца можно разделить на лепестковые и вентильные. Последние подразделяются на осесимметричные (с поступательным движением запирающего элемента, поворотно-дисковые и двустворчатые) клапаны и трёхстворчатые (в идеале — полнопроточные) клапаны.

  • Шаровой протез

  • Малогабаритный протез

  • Поворотно-дисковый протез

  • Двустворчатый протез

  • Трёхстворчатый протез

Многолетний (с конца 1950-х годов) мировой опыт применения механических протезов клапанов сердца сформировал следующие требования к ним[2]:

  • Механическая надёжность протеза должна обеспечивать долговечность его работы в течение жизни пациента.
  • Гемодинамические свойства протеза должны быть близки к естественным и сохраняться во времени (поток должен быть ламинарным, запирающий элемент должен обладать минимальной инерционностью, регургитация на протезе не должна быть выше, чем у естественных клапанов).
  • Протез должен быть биоинертным, не травмировать форменные элементы крови, обладать минимальным объёмом и массой.
  • Протез должен быть удобен для хирурга при имплантации в любых анатомических условиях.
  • Тромборезистентность должна исключать опасность развития тромбоза и тромбоэмболии без использования антикоагулянтной терапии.
  • Размеры и форма протеза не должны ухудшать механику сердечных сокращений.
  • Должен отсутствовать шумовой дискомфорт от работы протеза.
  • Должны быть гарантированы простота хранения и стерильность протеза.

Лепестковый клапан

Лепестковый клапан своей конструкцией в наибольшей степени имитируют строение естественных клапанов сердца, но используются значительно реже протезов других типов. Во первых, устаревшие конструкции лепестковых клапанов не используются из-за значительно большей вероятности осложнений (до полного разрушения клапана). Риск возникновения осложнений после имплантации современных лепестковых клапанов значительно ниже, но сложность их конструкции и необходимость использования дорогих материалов при изготовлении, делают их значительно дороже протезов других конструкций.

Осесимметричные клапаны

Известны три группы осесимметричных искусственных механических протезов клапанов сердца вентильного типа: клапаны с поступательным движением запирающего элемента (шаровые, полушаровые, чечевицеобразные и др.), поворотно-дисковые и двустворчатые.

Все эти протезы имеют одинаковый принцип работы и состав структурных элементов: запирающий элемент, ограничитель движения этого элемента, а также пришивную манжету для фиксации протеза. Запирающий элемент двигается пассивно в зависимости от изменения давления в сердечных камерах в течение сердечного цикла. Когда перед клапаном давление превышает давление после него, запирающий элемент открывается, и кровь протекает через клапан. При обратном перепаде давления запирающий элемент перекрывает проходное отверстие клапана и предотвращает регургитацию крови.

Клапаны с поступательным движением запирающего элемента

Клапан с поступательным движением запирающего элемента — протез, в котором запирающий элемент в виде шара, полушара, чечевицы, конуса, двояковыпуклой и вогнутой линзы, диска во время диастолы прижимается к седлу протеза и препятствует регургитации тока крови в желудочек сердца. Во время систолы запирающий элемент отходит к вершине ограничителя его хода и кровь свободно выходит из желудочков.

Первым по времени создания и наиболее распространённым стал шаровой клапан — протез, в котором запирающий элемент был выполнен в виде шара. Шаровые клапаны были наиболее распространены в 60—70 годах XX века (несколько сотен тысяч имплантированных клапанов). Более чем тридцатилетние отдалённые результаты позволяют использовать шаровые клапаны в качестве стандарта для оценки протезов других конструкций.

Шаровые клапаны имеют корпус с седлом и пришивной манжетой, запирающий элемент в виде шара, и ограничители хода (стопы), связанные с корпусом. Под действием разницы давления в сердечных камерах, разделённых протезом, шаровой элемент или отходит от седла на расстояние, определяемое ограничивающими ход стопами, или примыкает к седлу, препятствуя регургитацию крови.

Переход разработчиков к нешаровым запирающим элементам в конце 1960-х годов объясняется стремлением уменьшить профиль протеза, сохранить полезный объём сердечных камер, улучшить обтекание кровотоком самого запирающего элемента.

Поворотно-дисковый клапан

Отличительной чертой поворотно-дисковых протезов стала конструкция запирающего элемента в виде диска, крепившегося шарнирно в цилиндрическом корпусе протеза, с возможностью вращения диска вокруг оси, расположенной в плоскости корпуса.

Благодаря хорошим гидродинамическим свойствам, низкопрофильности и износоустойчивости, они были наиболее востребованы в клинической практике 1970—1980 годов, а лучшие зарубежные и отечественные модели протезов этой конструкции успешно применяются в настоящее время.

Двустворчатый клапан

Отличительной чертой двустворчатых протезов клапанов сердца стала конструкция запирающего элемента в виде двух симметрично расположенных полуокружных створок, крепление которых с каркасом протеза осуществляется посредством шарнирного соединения.

В настоящее время двустворчатые протезы являются наиболее популярными в кардиохирургии.

Трёхстворчатый клапан

Биологические искусственные клапаны сердца

Биологические искусственные клапаны сердца — протез, который частично состоит из неживых, специально обработанных тканей человека или животного.

В терминологии, относящейся к биопротезированию, встречаются понятия, имеющие латинское происхождение: heterogenic — разнородный, homogeneous — однородный, xenogenic — относящийся к другому биологическому виду, allogenic — относящийся к другой особи того же биологического вида, autogeneous — выделен от самой особи, graft — трансплантат. Соответственно, при пересадке между разными видами, например, от животного к человеку (как правило, свиные или бычьи участки), используют термин «ксенографт», при пересадке у одного и того же человека из одной позиции в другую — термин «аутографт», при пересадке от человека к человеку — «гомографт».

Разработка и применение биологических заменителей клапанов сердца (биокпапанов) начались в середине 1950-х годов, но основное развитие получили два десятилетия спустя. Их использование в клинической практике связано с недостатками их механических конкурентов: тромбоэмболическими осложнениями, необходимостью пожизненного приёма антикоагулянтов, протезным эндокардитом и острыми дисфункциями. Напротив, биологические заменители формируют структуру кровотока, близкую к физиологической, обладают низкой тромбогенностью, в большинстве случаев позволяют избежать приёма антикоагулянтной терапии, а постепенное развитие их дисфункций даёт возможность выполнить повторную операцию в плановом порядке.

Развитие биопротезов для сердечно-сосудистой системы проходит, преимущественно, по двум направлениям: первое — развитие конструкции каркасных биопротезов, второе — совершенствование технологий структурной стабилизации биоткани.

Структурная стабилизация биоткани

Стабильность коллагеновой структуры биологических протезов во времени (основа их длительной работы) достигается сохранением естественной архитектоники биологической ткани при её химической обработке и консервации. Одновременно решаются задачи повышения устойчивости коллагена к ферментативному и механическому разрушению, предотвращению клеточных и иммунных воздействий со стороны организма реципиента, уменьшения зон концентрации напряжения при фиксации биологической части протеза на каркасе[3].

Стабилизация биоткани ведётся путём её химической обработки веществами, образующими интрамолекулярные и межмолекулярные поперечные связи с аминокислотами молекул коллагена[4][5]. Химические агенты предотвращаются также кальцификацию и сохраняют эластические свойства биоткани, а различными методами стерилизации и консервации обеспечивается сохранение морфологической целостности и функциональной полноценности биоматериала, достигнутых при его стабилизации[4].

Каркасные биоклапаны сердца

Каркасный биологический клапан сердца

Каркасные биологические клапаны сердца — протез, в котором неживые, специально биологические обработанные ткани зафиксированы на опорном каркасе (стенте), покрытом синтетической тканью.

Впервые предложены в 1967 году[6], и в дальнейшем, помимо улучшения способов стабилизации биоткани, совершенствовались по конструкции и свойствам опорных каркасов для фиксации их биологической части.

Изначально использовался жёсткий опорный каркас, который приводил к отрыву протеза по линии крепления комиссур к его стойкам, а в ряде наблюдений — к разрывам самих створок. Было установлено, что нагрузки на створки биопротеза при фиксации в каркасе способствуют развитию усталостных повреждений коллагеновых волокон в центре створок и в местах фиксации комиссур — то есть механические и биологические повреждающие факторы суммируются[4].

Для уменьшения нагрузки на створки биоклапана в настоящее время широко применяются гибкие каркасы, сохраняющие жёсткое кольцо в основании. Напряжение в их створках по сравнению с жёстким каркасом уменьшалось в экспериментах in vitro на 90 %. Известны гибкие каркасы из стали различных марок, титановых сплавов, а также комбинированные — содержащие металлические и полимерные элементы конструкции[4][7].

Бескаркасные биоклапаны сердца

Клапанный гомографт

Сосудистый клапанный гомографт («гомографт» от лат. homo — человек, либо лат. homogeneus – однородный, и лат. graft — трансплантат, протез) — имплантируемый протез, который полностью или частично состоит из неживых, специально обработанных тканей человека, включающих сердечные клапаны.

Биоклапаны тканевой инженерии

Примечания

  1. Schoen F. J. Pathology of heart valve substitution with mechanical and tissue prostheses // In: Silver M. D., Gotlieb A. L., Schoen F. J. editors. Cardiovascular pathology. — Philadelphia (PA): Churchill Livingstone. — 2001. — С. 629—677.
  2. ↑ Орловский, 2007, с. 40.
  3. Дземешкевич С. Л., Стивенсон Л. У. Болезни митрального клапана. Функция, диагностика, лечение. — М: Гэотар Медицина, 2000. — 287 с. — 2000 экз. — ISBN 978-5-9231-0029-7.
  4. 1 2 3 4 Малиновский Н. Н., Константинов Б. А., Дземешкевич С. Л. Биологические протезы клапанов сердца. — М: Медицина, 1988. — 256 с.
  5. Carpentier A., Lemaigre G., Robert L. et al. Biological factors affecting long-term results of valvular heterografts // J. Thorac. Cardiovasc. Surg. — 1969. — Vol. 58, № 4. — С. 467—483.
  6. Geha A. Evaluation of Newer Heart Valve Prostheses // In: Roberts A. G., Conti C. R.: Current Surgery of the Heart. — London. Lippincott Comp., 1987. — С. 79—87.
  7. Фурсов Б. А.Биопротезирование клапанов сердца: Автореф. дис. …д-ра мед. наук — М., 1982. 

Литература

  • Вербовая Т. А., Гриценко В. В., Глянцев С. П., Давыденко В. В., Белевитин А. Б., Свистов А. С., Евдокимов С. В., Никифоров В. С. Отечественные механические протезы клапанов сердца (прошлое и настоящее создания и клинического применения). — Спб: Наука, 2011. — 195 с. — 1000 экз. — ISBN 978-5-02-025450-3.
  • Орловский П. И., Гриценко В. В., Юхнев А. Д., Евдокимов С. В., Гавриленков В. И. Искусственные клапаны сердца. — Спб: ОЛМА Медиа Групп, 2007. — 448 с. — 1500 экз. — ISBN 978-5-373-00314-8.

ИСКУССТВЕННЫЕ КЛАПАНЫ СЕРДЦА — ВИДЫ

ИСКУССТВЕННЫЕ КЛАПАНЫ СЕРДЦА — ВИДЫ

Клапан сердца — это часть сердца, образованная складками его внутренней оболочки, обеспечивает однонаправленный ток крови за счет перекрывания венозных и артериальных проходов.

Предназначение клапанов сердца — обеспечить беспрепятственный ток крови через сердце по малому и большому кругу кровообращения к органам и тканям.

Различные патологические процессы, как приобретенные, так и врожденные, могут вызывать нарушение работы клапанов (одного или нескольких), что проявляется стенозом клапана или его недостаточностью. Оба этих процесса могут привести к постепенному развитию сердечной недостаточности.

Сегодня в кардиохирургии используются механические и биологические искусственные клапаны сердца. И те, и другие имеют свои характерные особенности, преимущества и, к сожалению, не лишены недостатков.

МЕХАНИЧЕСКИЕ КЛАПАНЫ

Механические клапаны признаны очень надёжными, они способны прослужить всю жизнь, не требуя замены. Однако в случае их установки, пациенту необходимо постоянно принимать специальные лекарственные средства, снижающие вязкость крови и препятствующие тромбообразованию (антикоагулянты, антиагреганты), и добросовестно контролировать показатели коагулограммы.

В распоряжении кардиохирургов имеется три типа механических клапанов сердца в различных модификациях.

Типы механических клапанов сердца:

Шариковые,

Наклонный диск

Двустворчатые

 

Шариковый клапан был самым первым из них. Его имплантировали человеку в 1960 году и состоял он из металлического каркаса и заключённого в нём шарика, изготовленного из силиконового эластомера.

Суть работы подобной конструкции заключается в том, что при превышении давления крови в камере сердца относительно уровня данного показателя снаружи камеры шарик, выталкиваясь против каркаса, открывает путь для тока крови. По завершении сокращения сердечной мышцы (систолы) давление в камере становится ниже, чем за пределами клапана, и поэтому шарик начинает движение в обратную сторону и закрывает собой проход крови из одной в другую камеру сердца.

Дисковые искусственные клапаны сердца были созданы вторыми (в 1969 году), которые с момента их изобретения претерпели значительные изменения. Состоят они из металлического, покрытого пористым политетрафторэтиленом кольца с подшитыми к нему нитями, предназначенными для удержания клапана на месте.

В этом кольце при помощи двух металлических опор закреплён диск, открывающийся и закрывающийся во время выполнения сердцем его насосной функции. Диск такого клапана в большинстве случаев изготавливается из пиролитического углерода, отличающегося чрезвычайной твёрдостью, что защищает клапан от изнашивания на протяжении долгих лет. В некоторых современных моделях механических клапанов диск разделен на две части, работающие как двери.

Двустворчатые модели искусственных клапанов сердца — состоят из двух полукружных вращающихся вокруг распорки клапанов. Предложен такой дизайн был в 1979 году. Недостаток их заключается в том, что они подвержены наличию регургитации, то есть обратного тока крови и поэтому не могут считаться идеальными, хотя и имеют ряд преимуществ перед другими.

Двустворчатые клапаны, в отличие от шариковых и дисковых, обеспечивают более естественный ток крови, благодаря чему хорошо переносятся пациентами, так как позволяют снизить дозу антикоагулянтов.

В настоящее время именно механические клапаны сердца являются наиболее востребованными, большинство из них служит минимум в течение двух-трёх десятков лет, чего нельзя ожидать от биологических (тканевых).

 БИОЛОГИЧЕСКИЕ КЛАПАНЫ

Биологические (тканевые), будучи изготовленными из материалов животного происхождения (алло-, изо- или ксенотрансплантат), со временем разрушаются, и при этом срок их службы существенно зависит от возраста пациента и имеющейся у него сопутствующей патологии.

Биологическое клапаны — это клапаны, которые создаются из животных тканей, например, из ткани клапанов сердца свиньи, при этом они проходят предварительно некоторую химическую обработку для того, чтобы они были пригодны для имплантации в сердце человека.

Дело в том, что свиное сердце больше других схоже с сердцем человека, и поэтому лучше всего подходит для использования в замене клапанов сердца.

Имплантация свиных клапанов сердца — это тип т.н. ксенотрансплантации. При этом имеется риск отторжения пересаженного клапана. Для профилактики этого осложнения могут применяться определенные препараты, но они не всегда эффективны.

В другом типе биологических клапанов применяется биологическая ткань, которая подшивается к металлическому каркасу. Ткань для таких клапанов берется из бычьего или лошадиного перикарда. Ткань перикарда очень подходит для клапанов ввиду своих чрезвычайных физических свойств. Этот тип биологических клапанов очень эффективен для замены. Ткань для таких клапанов стерилизуется, ввиду чего они перестают быть чужеродными для организма, и реакции отторжения не отмечается. Такие клапаны гибкие и прочные, и при этом пациенту не требуется принимать антикоагулянты.

Биологические клапаны могут быть каркасными, снабжёнными пластиковой либо металлической рамкой (стентом), покрытой тканью, находящейся внутри протеза, и бескаркасными, более похожими на естественные клапаны сердца.

Чаще всего при протезировании поврежденных клапанов используются каркасные биопротезы.

Какой именно клапан лучше имплантировать в конкретной ситуации, решает врач  перед оперативным вмешательством строго в индивидуальном порядке.

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *