Электрическая активность сердца – Лабораторная работа № 4 работа с электрокардиографом. Построение средней электрической оси сердца

Содержание

ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ СЕРДЦА

⇐ ПредыдущаяСтр 5 из 6Следующая ⇒

Сердце как биологический насос обеспечивает непрерывное кровоснабжение тканей организма на протяжении всей жизни. Выполнение этой задачи достигается в результате автоматического, периодического сокращения мышцы сердца (миокарда). При этом наблюдается последовательное сокращение миокарда предсердий (объем их полостей начинает уменьшаться в первую очередь) и желудочков. Характер сокращения (автоматизм, периодичность, последовательность работы камер) зависит от особенностей строения сердца, свойств мышечных клеток и закономерностей распространения возбуждения по миокарду.

Сердце — мышечный полый орган, имеет форму, напоминающий овоид (от слова ovum — яйцо), и располагается в левой части грудной полости так, что его длинная ось составляет некоторый угол с вертикальной осью организма. Основание сердца, где находятся предсердия, располагается несколько выше, чем верхушка. В области правого предсердия локализован синусный узел 1(см. рис. 96) — совокупность клеток, способных к автоматическому, периодическому возбуждению. В основе этого процесса лежит спонтанное уменьшение величины мембранного потенциала. Когда это изменение достигает предельного значения (порога возбуждения),

Рис. 96 возникает потенциал действия, и происходит сокращение мышечной клетки (миокардиоцита). От синусного узла при помощи локальных токов волна возбуждения 5 распространяется сначала по миокарду правого, а затем и левого предсердия. В дальнейшем возбуждение переходит на мышцу желудочков. Для обеспечения сокращения желудочков в ходе эволюции сформировалась специальная проводящая система из модифицированных клеток миокарда. Проводящая система располагается в межжелудочковой перегородке, включает в себя атриовентрикулярный узел 2, пучок Гиса 3, ножки пучка Гиса 4 (см. рис. 96). Следует отметить, что клетки, входящие в состав, атривентрикулярного узла также способны автоматически возбуждаться, как и клетки синусного узла. Однако частота их спонтанного автоматического возбуждения (40-60 1/мин) меньше, чем в синусном узле. Именно поэтому в нормальных условиях частота сокращения сердца задается автоматией синусного узла. Особенностью клеток проводящей системы заключается в том, что скорость распространения возбуждения здесь существенно больше, чем по обычным клеткам миокарда. Так если по мышце сердца возбуждение распространяется в среднем со скоростью 0,2 — 1 м/с, то по проводящей системе со скоростью 3 — 4 м/с. Характер распространения возбуждения (от основания к верхушке) обеспечивает оптимальную координацию работы камер сердца — первоначально сокращаются предсердия, выталкивая кровь в желудочки, а затем сокращение миокарда желудочков обеспечивает поступление крови в большой и малый круги кровообращения.

Из сказанного можно сделать вывод, что в основе возникновения и распространения возбуждения в миокарде лежат механизмы электрогенеза — генерации потенциала действия миокардиоцитами. Именно поэтому регистрация и последующий анализ биопотенциалов сердца (электрокардиограммы) позволяет получить объективную информацию о развитии и сопряжении биологических процессов, обеспечивающих насосную функцию сердца.

Исходя из положений дипольной теории электричекого генератора, распространение возбуждения в миокарде можно описать с помощью вектора возбуждения. Поскольку возбуждение начинается с основания сердца и распространяется в сторону желудочков, вектор возбуждения практически совпадает с длинной осью сердца, указывая направление распространения возбуждения. Основываясь на положениях дипольной теории, Эйтховен предложил способ отведения электрической активности сердца с поверхности организма. Впоследствии этот способ регистрации

Рис. 97 (установки электродов регистрирующего прибора электрокардиографа) получил название стандартного (классического) отведения. По Эйнтховену выделяют три отведения — I (первое) — когда электроды устанавливают на правой и левой руке человека, II (второе) — электроды располагают на правой руке и левой ноге, III (третье) — электроды крепятся на левой ноге и левой руке (см. рис. 97). Если соединить точки установки электродов, образуется треугольник ABC Эйнтховена. Как следует из теории дипольного электрического генератора, разность тканевых биопотенциалов пропорциональна величине (модулю) вектора возбуждения и косинусу угла между его направлением и прямой, проходящей через точки установки электродов (или проекцией вектора возбуждения на эту прямую). Отсюда понятно, что величина биопотенциалов сердца в каждом стандартном отведении должна быть пропорциональна проекции вектора возбуждения на соответствующую сторону треугольника Эйнтховена. Особенность расположения сердца (вектора возбуждения) в этом треугольнике позволяет сделать вывод, что в нормальных условиях наибольшая разность потенциалов должна регистрироваться во II-м стандартном отведении, поскольку вектор возбуждения практически параллелен стороне треугольника, проходящего через точки установки электродов. Несколько меньшее по амплитуде напряжение регистрируется в первом и ми-

нимальное в третьем стандартном отведениях, т.е. UII > UI > UIII.

Нарушение соотношения амплитуд биопотенциалов в классических отведениях свидетельствует об изменении положения в пространстве (в треугольнике Эйнтховена) вектора возбуждения. К примеру, если выполняется соотношение UI > UII > UIII, то вектор возбуждения составляет минимальный угол со стороной треугольника, проходящей через точки установки электродов в первом стандартном отведении.

Среди причин, обеспечивающих изменение положения вектора возбуждения, практический интерес представляет механическое изменение положения сердца в грудной полости и нарушение характера распространения возбуждения по миокарду.

При фиксированном положении треугольника Эйнтховена по отношению к организму изменение расположения сердца в грудной полости способствует соответствующему смещению вектора возбуждения. Диагностическая ценность подобного заключения (механическое изменение положения сердца) по электрокардиограмме невелика, поскольку для этого существуют более надежные методы исследования, например, рентгенодиагностика.

Нарушение соотношения амплитуд напряжений в трех стандартных отведениях имеет особую диагностическую ценность в том случае, когда сердце сохраняет свое геометрическое расположение. В данном случае, как следует из теории дипольного электрического генератора, наблюдаемые факты могут быть объяснены лишь нарушением процесса распространения возбуждения по миокарду. Как известно, вектор возбуждения представляет собой векторную сумму электрических моментов, перпендикулярных к элементам поверхности, разделяющей возбужденные и невозбужденные области мышцы. Если в результате патологического процесса изменяется скорость проведения возбуждения, то происходит деформация поверхности волны возбуждения, изменение положения соответствующих электрических моментов и суммарного вектора возбуждения. Поэтому оценка положения вектора возбуждения в треугольнике Эйнтховена в данном случае позволяет диагносцировать нарушение процесса распространения возбуждения в сердце.

Возбуждение миокарду сопровождается изменением не только направления но и величины вектора возбуждения. Именно поэтому электрическая активность сердца, как и у других тканей, представляет собой совокупность электрических импульсов различной полярности. График, иллюстрирующий электрокардиограмму приведен на рисунке 98. Электрические импульсы — зубцы электрокардиограммы, получили буквенные обозначения: Р, Q, R, S, T. Доказано, что зубец Р характеризует процесс сокращения предсердий;

Рис. 98 комплекс зубцов QRS (желудоч-ковый комплекс) — сокращение желудочков; зубец Т — их расслабление. Анализ электрокардиограммы заключается в измерении и оценке амплитудных значений электрических импульсов, их формы и временных интервалов. Очевидно, временной интервал То между соответствующими импульсами (например, между зубцами R) — период сердечных сокращений, характеризует частоту сокращения f: f = 1/To. Длительность комплекса QRS описывает распространение возбуждения по миокарду желудочков. Сопоставление выявленных показателей электрокардиограммы у конкретных пациентов с теми, которые приняты за норму, позволяет сделать диагностическое заключение о нарушении автоматии, периодичности сокращения сердца, распространении возбуждения по миокарду и восстановлении исходного состояния органа. Детальные сведения о методах выявления конкретных патологических состояниях сердца по данным электрокардиографического исследования приводятся в специальных частных курсах.

Электрокардиография


Электрокардиография (ЭКГ) — является неинвазивным тестом, проведение которого позволяет получать ценную информацию о состоянии сердца. Суть данного метода состоит в регистрации электрических потенциалов, возникающих во время работы сердца и в их графическом отображении на дисплее или бумаге.

История электрокардиографии

Наличие электрических явлений в сокращающейся сердечной мышце впервые обнаружили два немецких ученых: Р. Келликер и И. Мюллер в 1856 году. Они провели исследования на различных животных, работая на открытом сердце. Однако возможность изучения электрических импульсов сердца отсутствовала до 1873 г., когда был сконструирован электрометр, прибор позволивший регистрировать электрические потенциалы. В результате совершенствования этого устройства появилась возможность записывать сигналы с поверхности тела, что позволило английскому физиологу А. Уоллеру впервые получить запись электрической активности миокарда человека. Он же впервые сформулировал основные положения электрофизиологических понятий ЭКГ, предположив, что сердце представляет собой диполь, т. е. совокупность двух электрических зарядов, равных по величине, но противоположных по знаку, находящихся на некотором расстоянии друг от друга. Уоллеру принадлежит и такое понятие, как электрическая ось сердца, о которой будет сказано ниже.

Первым, кто вывел ЭКГ из стен лабораторий в широкую врачебную практику, был голландский физиолог, профессор Утрехтского университета Виллем Эйнтховен. После семи лет упорных трудов, на основе изобретенного Д. Швейггером струнного гальванометра, Эйнтховен создал первый электрокардиограф. В этом приборе электрический ток от электродов, расположенных на поверхности тела, проходил через кварцевую нить. Нить была расположена в поле электромагнита и вибрировала, когда проходящий по ней ток взаимодействовал с электромагнитным полем. Оптическая система фокусировала тень от нити на светочувствительный экран, на котором фиксировались ее отклонения. Первый электрокардиограф был весьма громоздким сооружением и весил около 270 кг. Его обслуживанием были заняты пять сотрудников. Тем не менее, результаты, полученные Эйтховеном, были революционными. Впервые в руках врача оказался прибор столь много говорящий о состоянии сердца. Эйтховен предложил располагать электроды на руках и ногах, что используется и по сегодняшний день. Он ввел понятие отведения, предложив три так называемых стандартных отведения от конечностей, т. е. измерение разницы потенциалов между левой и правой рукой I отведение), между правой рукой и левой ногой II отведение) и между левой рукой и левой ногой III отведение). Заслуги Эйнтховена были оценены по достоинству и в 1924 г. ему была присуждена Нобелевская премия.

В двадцатых годах прошедшего века, Гольдбергер предложил еще три отведения, назвав их усиленными. При регистрации этих отведений одним из электродов служит одна из конечностей, а другим – объединенный электрод от двух других (индифферентный электрод). Разница потенциалов, измеренная между правой рукой и объединенными левой рукой и левой ногой, называется отведением aVR, между левой рукой объединенными правой рукой и левой ногой – отведением aVL и между левой ногой и объединенными руками – отведением aVF.

В дальнейшем, Вильсоном были предложены грудные отведения ЭКГ, в которых одним из электродов является точка на поверхности грудной клетки, а другим – объединенный электрод от всех конечностей. Электрод отведения V 1 располагается в IV межреберье по правому краю грудины, V2 – во IV межреберье по левому краю грудины, V 3 – на уровне IV ребра по левой окологрудинной (парастернальной) линии, V4 – в V межреберье по левой среднеключичной линии, V5 – в V межреберье по левой передней подмышечной линии и V6 – в V межреберье по левой средней подмышечной линии.

Таким образом, сформировалась привычная для нас система электрокардиографических отведений. Однако иногда используются и дополнительные отведения, когда общепринятые отведения оказываются недостаточными. Необходимость в этом возникает, например, при аномальном расположении сердца, при регистрации некоторых нарушений сердечного ритма и т. п. В этом случае используются правые грудные отведения (симметричные по отношению к левым), высокие грудные отведения (расположенные на одно межреберье выше стандартных) и отведения V7-9, являющиеся как бы продолжением основных отведений. Для оценки электрической активности предсердий используют пищеводное отведение, когда один из электродов располагают в пищеводе. Кроме общепринятой системы отведений, используются также отведения по Небу, обозначаемые буквами D (dorsalis – спинальное), А (anterior – переднее) и (I inferior – нижнее). Другие системы отведений (Лиана, Франка) в современной клинической практике практически не используются.

 

в начало страницы

Как проводится ЭКГ

ЭКГ является очень информативным недорогим и доступным тестом, позволяющим получить много информации о сердечной деятельности.

ЭКГ является записью электрической активности сердца. Запись производится с поверхности тела пациента (верхние и нижние конечности и грудная клетка).

Наклеиваются электроды (10 штук) или используются специальные присоски и манжеты. Снятие ЭКГ занимает 5-10 минут.

ЭКГ регистрируют на различной скорости. Обычно скорость движения бумаги составляет 25 мм/сек. При этом 1 мм кривой равен 0, 04 сек. Иногда для более детальной записи используют скорость 50 и даже 100 мм/сек. При длительной регистрации ЭКГ для экономии бумаги используют меньшую скорость – от 2,5 до 10 мм/сек.

 

в начало страницы

Как интерпретируется ЭКГ

Каждая клетка миокарда представляет собой маленький электрический генератор, который разряжается и заряжается при прохождении волны возбуждения. ЭКГ является отражением суммарной работы этих генераторов и показывает процессы распространения электрического импульса в сердце.

В норме электрические импульсы автоматически генерируются в небольшой группе клеток, расположенных в предсердиях и называемых синоатриальным узлом. Поэтому нормальный ритм сердца называется синусовым.

Когда электрический импульс, возникая в синусовом узле, проходит по предсердиям на электрокардиограмме появляется зубец P.

Дальше импульс через атриовентрикулярный (АВ) узел распространяется на желудочки по пучку Гиса. Клетки АВ-узла обладают более медленной скоростью проведения и поэтому между зубцом P и комплексом, отражающим возбуждение желудочков, имеется промежуток. Расстояние от начала зубца Р до начала зубца Q называется интервал PQ. Он отражает проведение между предсердиями и желудочками и в норме составляет 0,12-0,20 сек.

Потом электрический импульс распространяется по проводящей системе сердца, состоящей из правой и левой ножек пучка Гиса и волокон Пуркинье, на ткани правого и левого желудочка. На ЭКГ это отражается несколькими отрицательными и положительными зубцами, которые называются комплексом QRS. В норме длительность его составляет до 0, 09 сек. Далее кривая вновь становится ровной, или как говорят врачи, находится на изолинии.

Затем в сердце происходит процесс восстановления исходной электрической активности, называемый реполяризацией, что находит отражение на ЭКГ в виде зубца T и иногда следующего за ним небольшого зубца U. Расстояние от начала зубца Q до конца зубца Т называется интервалом QT. Он отражает так называемую электрическую систолу желудочков. По нему врач может судить о продолжительности фазы возбуждения, сокращения и реполяризации желудочков.

 

в начало страницы

Диагностические возможности

ЭКГ является ценным диагностическим инструментом. По ней можно оценить источник (так называемый водитель) ритма, регулярность сердечных сокращений, их частоту. Все это имеет большое значение для диагностики различных аритмий. По продолжительности различных интервалов и зубцов ЭКГ можно судить об изменениях сердечной проводимости. Изменения конечной части желудочкового комплекса (интервал ST и зубец Т) позволяют врачу определить наличие или отсутствие ишемических изменений в сердце (нарушение кровоснабжения).

Важным показателем ЭКГ является амплитуда зубцов. Увеличение ее говорит о гипертрофии соответствующих отделов сердца, которая наблюдается при некоторых заболеваниях сердца и при гипертонической болезни.

ЭКГ, вне всякого сомнения, весьма мощный и доступный диагностический инструмент, однако стоит помнить о том, что и у этого метода есть слабые места. Одним из них является кратковременность записи – около 20 секунд. Даже если человек страдает, например, аритмией, в момент записи она может отсутствовать, кроме того запись, обычно производится в покое, а не во время привычной деятельности. Для того чтобы расширить диагностические возможности ЭКГ прибегают к длительной ее записи, так называемому мониторированию ЭКГ по Холтеру в течение 24-48 часов.

Иногда бывает необходимо оценить, возникают ли на ЭКГ у пациента изменения, характерные для ишемической болезни сердца. Для этого проводят ЭКГ-тест с физической нагрузкой. Для оценки переносимости (толерантности) и соответственно, функционального состояния сердца нагрузку осуществляют дозировано, с помощью велоэргометра или бегущей дорожки.

 

в начало страницы

Показания к проведению ЭКГ

1. Подозрение на заболевание сердца и высокий риск в отношении этих заболеваний. Основными факторами риска являются:

· Гипертоническая болезнь

· Для мужчин – возраст после 40 лет

· Курение

· Гиперхолестеринемия

· Перенесенные инфекции

· Беременность

2. Ухудшение состояния больных с заболеваниями сердца, появление болей в области сердца, развитие или усиление одышки, возникновение аритмии.

3. Перед любыми оперативными вмешательствами.

4. Заболевания внутренних органов, эндокринных желез, нервной системы, болезней уха, горла, носа, кожные заболевания и т.д. при подозрении на вовлечение сердца в патологический процесс.

5. Экспертная оценка шоферов, пилотов, моряков и т.д.

6. Наличие профессионального риска.

По рекомендации терапевта (кардиолога) для дифференциальной диагностики органических и функциональных изменений сердца проводится электрокардиография с лекарственными пробами (с нитроглицерином, с обзиданом, с калием), а также ЭКГ с гипервентиляцией и ортостатической нагрузкой.

ОБЩАЯ ИНФОРМАЦИЯ

ЭЭГ — метод регистрации электрической активности (биопотенциалов) головного мозга через неповрежденные покровы головы, позволяющий судить о его физиологической зрелости, функциональном состоянии, наличии очаговых поражений, общемозговых расстройств и их характере. Регистрация биопотенциалов непосредственно с обнаженного мозга называется электрокортикографией и обычно проводится во время нейрохирургических операций.

 

ЭЭГ является первым и часто единственным неврологическим амбулатораторным исследованием, которое проводится при эпилептических приступах.
Электроэнцефалограмма представляет собой запись суммарной электрической активности клеток полушарий мозга.
Спонтанные колебания биопотенциалов различаются по частоте:

дельта-волны 0.5-3,5 колебания/с
тета-волны 4-7,5 колебания/с
альфа-волны 8- 13 колебаний/с
бета-волны 13,5-30 колебаний/с

Могут меняться также их амплитуда и форма. У детей первых 2-3 мес жизни уже различаются волны с частотой 1-3 колебания/с, 4-7 колебаний/с и 8-12 колебаний/с. Однако доминирует все еще ритм 0,5-3 колебания/с. При этом на медленные волны иногда наслаиваются быстрые колебания (13-15-19 колебаний/с). В возрасте 4-6 мес возрастает количество тета-волн. Активность 6-7 колебаний/с, предшествующая альфа-ритму, отмечается на ЭЭГ постоянно к 4-му году жизни ребенка. Выраженный альфа-ритм появляется в теменно-затылочной области в возрасте 4-5 лет и становится устойчивым в более позднем возрасте (7-8 лет).
Большое значение в диагностике поражений мозга имеют функциональные пробы: реакция активации, прерывистое световое раздражение (фотостимуляция), усиленное глубокое дыхание в течение 2-3 мин (гипервентиляция), звуковое раздражение и др.

 

Данные ЭЭГ весьма показательны в диагностике эпилепсии. При повышении готовности к судорогам на ЭЭГ появляются острые волны и «пики», которые возникают на фоне дизритмии и могут сопровождаться гиперсинхронизацией основного ритма. При эпилепсии большой приступ вызывает ускорение ритмов ЭЭГ, психомоторный — замедление электрической активности, а малый приступ (абсанс) — чередование быстрых и медленных колебаний (комплексы пик-волна с частотой 3 в секунду). Все электрические потенциалы мозга приобретают необычно высокие амплитуды (до 1000 и более мкВ).

 

Важным ЭЭГ-признаком эпилепсии является наличие так называемых пиков (спайков) и острых волн, эпизодических или устойчивых. Часто пики сопровождаются медленными волнами, образуют комплекс пик — волна. Их появление бывает генерализованным или же они регистрируются в виде локальных разрядов, свидетельствуя об эпилептическом очаге.

Регистрация на ЭЭГ пароксизмальной активности, пиков, острых волн и комплексов спайк — волна (острая — медленная волна) отражает состояние головного мозга, обозначаемое как «эпилептический тип активности». Совокупность всех этих признаков почти всегда говорит о наличии эпилепсии.

В межприступный период на ЭЭГ больных эпилепсией независимо от типа приступов может регистрироваться пароксизмальная активность: высоковольтные потенциалы тельта-, дельта- и альфа-диапазона, иногда ритмы с частотой 14-16 колебаний/с, но чаще — 3-4 колебания/с.
Появление на ЭЭГ высокоамплитудной низкочастотной бета-активности и замедление основного ритма может указывать на медикаментозную интоксикацию.

 

Гипсаритмия — изменения ЭЭГ, наблюдаемые при инфантильных спазмах. Они характеризуются высокими острыми единичными или множественными спайками, которые отмечаются нерегулярно во всех отведениях, перемежаясь со многими высоковольтными медленными волнами; обычно встречаются при бодрствовании, но наиболее выражены и продолжительны в стадии неглубокого сна.

При опухолях полушарий большого мозга (височная, затылочная, теменная локализация) в 70-80 % случаев на ЭЭГ выражена межполушарная асимметрия с наличием фокуса патологической активности в виде полиморфных дельта-волн соответственно области поражения.

При черепно-мозговой травме легкой степени отмечаются кратковременное угнетение альфа-активности и наличие дельта-волн. Эти изменения быстро проходят. При черепно-мозговой травме тяжелой степени доминируют тета- и дельта-волны. На этом фоне могут появляться высокоамплитудные медленные волны в форме вспышек. Очаговые изменения ЭЭГ в зоне очага контузии в большинстве случаев нарастают в течение 5-10 дней после травмы. Нередко обнаруживаются изменения стволовой биоэлектрической активности, при которой периоды угнетения тета-волн сменяются их высокоамплитудными вспышками.

 

ПРОВЕДЕНИЕ ИССЛЕДОВАНИЯ

ЭЭГ совершенно безвредно и безболезненно. Пациент во время обследования сидит в удобном кресле, расслабленный с закрытыми глазами (состояние пассивного бодрствования). Для проведения ЭЭГ на голове прикрепляются с помощью специального шлема маленькие электроды, которые соединяются проводами с электроэнцефалографом. Электроэнцефалограф усиливает биопотенциалы, полученные с датчиков, в сотни тысяч раз и записывает их на бумагу или в память компьютера.
Если исследование проводится ребенку, то ему необходимо объяснить что его ждет во время исследования и убедить в его безболезненности. Пациент перед исследованием не должен испытывать чувство голода, так как это может вызывать изменения на ЭЭГ. Голова перед ЭЭГ должна быть чисто вымыта — это позволит добиться лучшего контакта электродов с кожей головы и получения более достоверных результатов исследования. С детьми дошкольного возраста необходимо потренироваться в надевании «шлема» и пребывании в неподвижном состоянии с закрытыми глазами (игра в космонавта, танкиста и т.п.), а также научить глубоко и часто дышать.
Если во время ЭЭГ у пациента случится приступ, то результативность исследования намного возрастает, так как можно будет более точно выявить место нарушения электрической активности мозга. Однако, учитывая интересы безопасности пациента, не следует специально провоцировать судорожные приступы. Иногда перед ЭЭГ больные не принимают лекарства. Этого не следует делать. Резкое прекращение приема препаратов провоцирует приступы и даже может вызвать эпистатус.
Желательно чтобы ЭЭГ проводил квалифицированный специалист. Обычно это специально обученный невропатолог, иногда его называют электроэнцефалографистом или нейрофизиологом. Он должен уметь расшифровывать ЭЭГ пациентов той или иной возрастной группы. Следует учитывать, что ЭЭГ детей и подростков значительно отличаются от ЭЭГ взрослых. При этом нейрофизиолог не только описывает результаты исследования, но и ставит свой клинико-электроэнцефалографический диагноз. Однако поставить окончательный диагноз без более полных клинических данных электроэнцефалографист не может. Многие изменения ЭЭГ могут являться неспецифическими, т.е. их точная интерпретация возможна только с учетом клинической картины болезни и иногда после дополнительного обследования.
Результаты ЭЭГ зависят от возраста больного, лекарств, которые он принимает, времени последнего приступа, наличия тремора (дрожания) головы и конечностей, нарушений зрения, дефектов черепа. Все перечисленные факторы могут влиять на правильное толкование и использование данных ЭЭГ.




Электрическая активность в сердце

Физика > Электрическая активность в сердце

 

Как выглядит электрическая активность сердца: методы исследования и регистрации, определение миокарда, волокон Пуркинье, синоатриального узла, строение сердца.

Электрическая энергия, стимулирующая сердце, создается в синоатриальном узле, кардиостимуляторе и частично транспортируется волокнами Пуркинье.

Задача обучения

  • Найти части сердца, функционирующие в качестве кардиостимулятора.

Основные пункты

  • Человеческое сердце создает непрерывное кровообращение в сердечном цикле и является важнейшим органом в организме.
  • У сердца есть 4 камеры: левое и правое предсердия (верхние) и правый и левый желудочек (нижние). Есть система проводимости, передающая импульсы через него.
  • Электрическая энергия создается в синоатриальном узле, а далее разряжается, отправляя импульс сквозь предсердие.
  • В предсердиях электрический сигнал путешествует по клеткам, а в желудочках использует специализированную ткань – волокна Пуркинье.
  • Волокна Пуркинье дают возможность сердечной недостаточности формировать синхронные сокращения желудочков, поэтому нужны для поддержания стабильного сердечного ритма.

Термины

  • Миокард – середина трех слоев, создающих сердечную стену.
  • Волокна Пуркинье – специализированные сердечные мышечные клетки, умеющие стремительно и эффективно управлять сердечными мышцами.
  • Синоатриальный узел (проводащая система сердца) – группа специализированных клеток сердечной ткани, расположенных в правом предсердии, генерирующем импульс с установкой на нормальный синусовый ритм.

Электрическая активность в сердце

Человеческое сердце поддерживает постоянное кровообращение в сердечном цикле и выступает одним из важнейших органов в системе. Рассмотрим внимательнее строение сердца и принцип его работы. Обладает четырьмя камерами: правое и левое предсердия (верхние) и правым и левым желудочками (нижние). Стороны отделены плотной стенкой – перегородка. При каждом ударе правый желудочек накачивает столько крови в легкие, сколько выталкивает левый.

Структурная схема коронального отдела сердца спереди. Две крупные камеры – желудочки

Стимулирующая сердце электрическая энергия появляется в синоатриальном узле, создающем определенный потенциал, а далее разряжает, отправляя импульс сквозь предсердия. Там сигнал перемещается по клеткам, а в желудочках – по волокнам Пуркинье, посылающих их в миокарду.

Изолированная система сердечной проводимости, отображающая синоатриальные волокна и Пуркинье

Роль синоатриального узла в кардиостимуляторе

Синоатриальный узел – импульсно-генерирующая ткань, расположенная в предсердии. То есть, перед нами генератор нормального синусового ритма. Это группа клеток (специализированные кардиомицеты), находящихся на стенке правого предсердия. У всех сердечных клеток есть способность генерировать электрические импульсы, но узел запускает процесс.

Приближенная микрофотография ткани синоатриального узла и соседнего нервного волокна

Клетки в узле находятся в правом верхнем углу и разряжаются за 60-100 ударов в минуту. Синоатриальаный узел именуют главным кардиостимулятором. Если он не функционирует как импульс, то группа клеток, расположенных дальше в сердце, займут его место. Они формируют атриовентрикулярный узел – область между предсердиями и желудочками внутри перегородки. Если и этот узел страдает, то в игру вступают волокна Пуркинье. Обычно они не контролируют сердечный ритм, потому что генерируют потенциалы действия на более низкой частоте.

Волокна Пуркинье

Волокна Пуркинье в сердце расположены во внутренних стенках желудочков. Представлены специализированными кардиомиоцитами, способными стремительно и эффективно использовать потенциал сердечного действия. С этими волокнами система сердечной недостаточности может формировать синхронные сокращения желудочков.

В момент желудочкового сокращения волокна переносят импульс сжатия от левой и правой ветвей пучка к миокарде желудочков. Из-за этого мышечная ткань сокращается, а кровь выталкивается из сердца.

Волокна Пуркинье могут автоматически функционировать на скорости в 15-40 ударов в минуту. А вот узел – 100 ударов в минуту. То есть, волокна также генерируют потенциалы действия, но делают это намного медленнее синоатриального узла и прочих кардиостимуляторов. Так что, если все предыдущие механизмы собьются, то они станут последней надеждой.


Какие секреты раскрывает ЭКГ?

ЭКГ — один из самых востребованных методов диагностики. Кажется, что его назначают всем подряд. В чем причина такой популярности? И что именно измеряется при помощи метода электрокардиографии?

Как устроено сердце человека?

Как устроено сердце человека?

Строение сердца человека известно нам еще со времен школы. Оно состоит из «венозного сердца» (правое предсердие и правый желудочек) и «артериального сердца» (левое предсердие и левый желудочек). Предсердия и желудочки обоих половинок соединены между собой специальными клапанами, не позволяющими крови двигаться в обратном направлении.

Венозная, бедная кислородом кровь со всего тела попадает в правое предсердие, оттуда в правый желудочек, из которого выбрасывается в малый круг кровообращения и уходит в легкие. Там она насыщается кислородом, после чего направляется в левое предсердие. Оттуда она попадает в левый желудочек и уходит через аорту на большой круг кровообращения — ко всем органам тела.

Сердечная мышца (миокард) — это особая разновидность поперечно-полосатой мускулатуры. Скелетные мышцы получают электрический импульс от мозга, а миокард сам себе вырабатывает электричество. Именно этим объясняется способность сердца сокращаться некоторое время даже после отсоединения его от тела.

Откуда в сердце электричество?

Откуда в сердце электричество?

Сердце имеет собственную систему производства электричества и его распределения.

Для получения электрического тока необходимо, чтобы возник трансмембранный потенциал действия. Что это значит? Клетка миокарда (кардиомиоцит) отгорожена от внешней среды мембраной. Вокруг клетки — внеклеточная жидкость, внутри — содержимое клетки. Концентрация ионов натрия, заряженных положительно, снаружи клетки в 10 раз выше, чем внутри нее. Но в мембрану встроены специальные белки — калий-натриевые насосы. Они могут протаскивать внутрь клетки 3 иона натрия (Na+), а наружу при этом выводить 2 иона калия (K+). В результате на данном участке мембраны ее заряд меняется на противоположный и возникает зона разницы потенциалов. Этот процесс называется деполяризацией (возбуждением). Зона деполяризации продвигается дальше — таким образом происходит распространение электрического импульса по тканям сердца. На следующем этапе клетка стремится к восстановлению исходного состояния и начинается процесс реполяризации.

Выделяют три главных компонента системы производства и распределения электричества:

  • Синоартериальный (синусовый) узел.

Он находится в правом предсердии и является главным кардиостимулятором, своего рода, основной «батарейкой» сердца. Именно он отвечает за автоматизм сердца — способность миокарда возбуждаться без внешней помощи. Его также называют водителем ритма 1-го порядка.

  • Атриовентрикулярный узел.

Находится между правым и левым предсердиями и является «запасной батарейкой», то есть, он тоже может генерировать электричество, но запускается в случае, если перестает работать синоартериальный узел. Соответственно, это водитель ритма 2-го порядка. В норме же он отвечает за небольшую задержку проведения электрического импульса от синусового узла, что необходимо для скоординированного сокращения всех отделов сердца. Это еще одна особенность миокарда, отличающая эту мышцу от других видов поперечно-полосатой мускулатуры — одновременное сокращение всех волокон.

  • Проводящие волокна Пуркинье.

Система волокон, в основании сердца, распределяющая поступающее электричество по всем отделам сердца: правая ветвь — к правому желудочку, а левая — к левому.

История электрокардиографии

История электрокардиографии

Основоположниками электрофизиологии и, в частности, исследований электрической активности сердца были немецкие ученые. В середине XIX века ее существование было подтверждено в ходе опытов на лягушках. В то же время аналогичными изысканиями занимался и наш соотечественник И.М. Сеченов, которые упоминает об электрических явлениях в сердце в своем научном труде «О животном электричестве». В 1873 году после изобретения Липпманом ртутного электрометра был описан механизм образования потенциала действия при работе сердца у человека. А в 1887 году голландский физиолог Виллем Эйнтховен продемонстрировал всему миру свое изобретение — струнный гальванометр. Устройство Эйнтховена позволило записать первую электрокардиограмму. Через 8 лет изобретатель ввел обозначения зубцов линии ЭКГ, которыми современные медики пользуются до сих пор.

В 1901 году Эйнтховен представил научному сообществу аппарат весом более 270 кг — это был первый в мире электрокардиограф. Обслуживать его были должны 5 человек. Несмотря на некоторые неудобства в использовании, агрегат Эйнтховена произвел революцию в медицине. Почти через четверть века, в 1924 году, ученому была присуждена Нобелевская премия.

Электрическая активность сердца на электрокардиограмме

Электрическая активность сердца на электрокардиограмме

Электрокардиография — это метод, позволяющий отследить, как электрический импульс проходит через все ткани миокарда, то есть — электрическую активность сердца. Чтобы отследить ее изменения, используют электроды, которые размещают на разных участках тела. Для улучшения проводимости кожу смазывают токопроводящим гелем. В современных аппаратах также имеются фильтры, которые улучшают сигнал.

По мере продвижения импульса по миокарду выделяют следующие этапы, отраженные на ленте кардиографа:

  • Р-зубец — электрическая активность предсердий: электрический потенциал от синусового узла распространяется сначала по правому предсердию, а потом по левому. ЭКГ фиксирует их суммарное действие в виде одного общего зубца;
  • интервал PQ — это тот самый момент задержки импульса в атриовентрикулярном узле;
  • QRS-комплекс — электрическая активность желудочков. Электрический потенциал постепенно распространяется по перегородке между желудочками до верхушки сердца – этот момент на кардиограмме виден как зубец R. А потом по «внешним» стенкам сердца электрический потенциал доходит до основания сердца — и этот момент виден в виде обратного пика S;
  • ST-сегмент — желудочки сокращены, но электричество через них не течет;
  • T-зубец — реполяризация, то есть, «сброс» электрического потенциала и подготовка миокарда к следующему сокращению.

По изменениям линии кардиограммы врачи видят на каком этапе и каким образом изменилась электрическая активность сердца.

Что может ЭКГ?

Что может ЭКГ?

ЭКГ — один из основных методов обследования в современной медицине. Во-первых, он многое говорит о работе сердца и о его здоровье. А учитывая, что множество заболеваний отражается на сердце — ЭКГ крайне актуальный метод диагностики. И поэтому нередко результаты ЭКГ являются поводом для проведения дополнительных исследований. Во-вторых, это дешевый метод. Никаких дорогих реактивов — только гель и рулон ленты для записи, и результаты видны сразу — сиди и расшифровывай. Что врач видит на кардиограмме?

  • В ходе исследования определяется частота и регулярность сердечных сокращений. Это значит, что врач может выявлять внеочередные сокращения (экстрасистолы) или нарушения сердечного ритма (аритмии).
  • При повреждении, отмирании отдельных участков сердечной мышцы будет наблюдаться нарушение кровоснабжения и проводимости электрического импульса. То есть, ЭКГ позволяет диагностировать ишемию миокарда и инфаркт.
  • Любые изменения электрической активности говорят о сбоях внутрисердечной проводимости, то есть, можно определять участки блокад, а также изменения тканей миокарда, например, гипертрофию левого желудочка.

Чего не может ЭКГ?

Чего не может ЭКГ?

Электрокардиография — мощный инструмент диагностики. Но и он может не все. Например, стандартное обследование при помощи ЭКГ не позволяет выявить опухоли сердца, обнаружить шумы, а также не дает возможности наблюдать гемодинамику — направление движения крови при работе сердца. Для диагностики перечисленных состояний и патологий требуется проведение специальных исследований в особых условиях — суточное мониторирование, нагрузочные пробы и т. п.

Часто при изменениях на электрокардиограмме врач направляет пациента на эхокардиографию. Несмотря на название, данный метод кардинально отличается от ЭКГ. По сути это УЗИ сердца. И вот уже с помощью УЗИ можно обнаружить многое из того, что не «видит» ЭКГ. ЭхоКГ дает возможность врачу наблюдать работу сердца «вживую» и, соответственно, делать выводы о его здоровье. В ходе процедуры можно определить размеры всего органа и отдельных его участков, толщину стенок, рассмотреть сосуды и клапаны. Врач может измерить давление в отдельных камерах сердца и оценить объемы кровотока.

Современные методы ЭКГ и здоровье человека

Современные методы ЭКГ и здоровье человека

Метод ЭКГ совершенствуется. Растут и возможности его применения.

Самое популярное достижение последних лет — возможность получать данные ЭКГ на смартфон. Специальные датчики в комплекте с приложением для мобильного устройства уже сейчас дают возможность отслеживать аритмии. Правда, чувствительность датчиков пока находится на «обывательском» уровне, то есть, о точности измерений говорить не приходится. Поэтому проводить диагностику по смартфону с датчиком, встроенным в его чехол, нельзя. Но опасные для здоровья состояния такие устройства вполне позволяют отследить. Данные могут тут же передаваться в сеть и попадать к лечащему врачу, сигнализируя об опасном состоянии пациента.

В последние годы ученые более внимательно присмотрелись к использованию ЭКГ при обследовании молодых спортсменов. В норме проведение ЭКГ является обязательным этапом медосмотра перед тем, как ребенок или молодой человек получат доступ к тренировкам. Но наблюдения последних лет показали, что некоторые отклонения ЭКГ от нормы позволяют выделять людей с повышенной частотой внезапной сердечной смерти, причем ранее на подобные отклонения врачи внимания не обращали. И таких молодых спортсменов набирается 20%.

В 2012 году американские педиатры доказали, что ЭКГ вместе или без ЭхоКГ потенциально позволяет выявлять детей, предрасположенных к синдрому внезапной детской смерти. На данный момент этот метод находится в процессе изучения.

Наконец, регулярное проведение ЭКГ полезно даже для людей, у которых вообще нет никаких подозрений на сердечно-сосудистые заболевания.

Электрическая активность сердца

Проще говоря, сердце — насос, управляемый электричеством.

Рис. 1-1. В норме электрический импульс в сердце возникает в синусовом узле, расположенном в правом предсердии. Затем импульс распространяется по правому и левому предсердиям. Далее он проходит через атриовентрикулярный узел и пучок Гиса. После этого возбуждение распространяется на левый и правый желудочки по левой и правой ножкам пучка Гиса соответственно. Последний этап — передача возбуждения миоцитам желудочков по волокнам Пуркинье.

Обычно электрическое возбуждение сердца начинается в синусовом (синоатриальном) узле. Он расположен в правом предсердии около устья верхней полой вены. Этот узел состоит из специализированных клеток, способных автоматически вырабатывать электрический импульс. От синусового узла импульс распространяется на правое предсердие, а затем на левое предсердие.

 Таким образом, синусовый узел — водитель ритма сердца в норме.
 

Первая стадия активации сердечной мышцы — электрическое возбуждение правого и левого предсердия. Это, в свою очередь, сигнал для сокращения предсердий, которые одновременно обеспечивают поступление крови через трёхстворчатый и митральный клапаны в правый желудочек и левый желудочек. Далее электрический импульс распространяется на специализированную проводящую ткань в атриовентрикулярном соединении, которое включает АВ-узел и пучок Тиса. После этого импульс переходит на левую ножку пучка Гиса (ЛНПГ) и правую ножку пучка Гиса (ПНПГ), а затем к миоцитам желудочков.

 АВ-соединение — своеобразный электрический «мост», соединяющий предсердия и желудочки.
 

Он расположен в основании межпредсердной перегородки и распространяется на межжелудочковую перегородку. Верхняя (проксимальная) часть АВ-соединения — АВ-узел (иногда термины «атриовентрикулярный узел» и «атриовентрикулярное соединение» используют как синонимы). Нижнюю (дистальную) часть АВ-соединения называют пучком Гиса по имени описавшего его физиолога. Пучок Тиса делится на две части: правую ножку, по которой импульсы поступают к правому желудочку, и левую ножку (она также состоит из двух частей, которые называют ветвями), по которой импульсы поступают к левому желудочку.

Электрический импульс одновременно распространяется по ЛНПГ и ПНПГ на миокард желудочков с помощью специализированных проводящих клеток (волокон Пуркинье), которые расположены в миокарде желудочков.

В норме, когда возбуждение сердца начинается в синусовом узле (нормальный синусовый ритм), АВ-соединение передаёт электрический импульс на желудочки. Однако при некоторых обстоятельствах АВ-соединение может действовать как независимый водитель ритма сердца (например, если функция синусового узла нарушена, оно может стать источником эктопического ритма). В таких случаях вместо синусового ритма возникает ритм АВ-соединения, что хорошо видно на электрокардиограмме.

Распространение электрических импульсов по предсердиям приводит к сокращению предсердий, а распространение по желудочкам — к сокращению желудочков. В результате кровь поступает к лёгким и в системный кровоток. Сокращение сердца после его электрического возбуждения можно рассматривать как электромеханигеское сопряжение. В основе этого механизма лежит поступление ионов кальция в миоциты предсердий и желудочков при распространении электрического импульса.

Лабораторная работа № 4 работа с электрокардиографом. Построение средней электрической оси сердца

Цели работы:

  1. Ознакомиться с представлениями, составляющими основу метода электрокардиографии.

  2. Снятие ЭКГ в трех отведениях. Построение средней электрической оси сердца.

1. Электрическая активность сердца.

Электрокардиография – метод регистрации электрической активности миокарда в ходе сердечного сокращения.

Регистрируется некоторый суммарный эффект активности клеток. На уровне отдельной клетки, при ее переходе в возбужденное состояние, на мембране происходит изменение электрического потенциала: на смену отрицательному потенциалу покоя приходит положительный потенциал действия. Этот процесс сопряжен с переносом ионов различного вида через мембрану. Клеточная мембрана в спокойном состоянии клетки поляризована таким образом: внутри клетки – минус, снаружи – плюс. При переходе клетки в возбужденное состояние ситуация на мембране меняется на противоположную: внутри клетки – плюс (преобладают положительные ионы), снаружи – минус. Эти изменения на клеточной мембране называются деполяризацией.

После того, как возбужденная клетка выполнила свою природную функцию, она возвращается в спокойное состояние; восстанавливаются и начальные концентрации ионов по обе стороны мембраны. Этот процесс называется реполяризацией.

Переходы клеток в возбужденное состояние и последующий их возврат в спокойное состояние носит массовый характер, и в различных участках миокарда начинается, происходит и заканчивается не одновременно. Поэтому можно говорить о волнах деполяризации и реполяризации, распространяющихся по сердцу в целом или по отдельным его частям — предсердиям, желудочкам, перегородкам.

Представлениям о сердце как органе, по которому распространяются волны деполяризации и реполяризации, хорошо соответствует модель, согласно которой сердце – это электрический диполь, электрическое поле которого ощутимо (благодаря проводящим тканям) далеко за пределами сердца, и может регистрироваться с помощью системы электродов, помещенных на поверхности тела.

2. Электрический диполь как модель.

Электрический диполь нас будет интересовать не как техническое устройство, а как электрическая модель сложных процессов. Можно говорить о различных электрических моделях; рассмотрим две из них: электростатический и токовый диполи, с тем, чтобы выбор модели для сердца представлялся обоснованным.

Электростатический диполь – это система из двух равных по величине зарядов +q и – q, разделенных промежутком L. Дипольный момент – это вектор , модуль которого р = qL, а направление – по прямой, соединяющей заряды – полюса, «от минуса к плюсу». Эта система зарядов, как целое, электрически нейтральна: +q – q = 0. Но чем больше величина дипольного момента, тем ощутимее электрическое поле вблизи диполя.

Электростатический диполь оказался весьма продуктивным модельным представлением при изучении и описании свойств диэлектрических сред (таковы, например, жировые и костные ткани). Молекулу, у которой центры положительных и отрицательных зарядов не совпадают в силу сложности их строения, можно рассматривать как диполь и аттестовать величиной дипольного момента. Тогда дипольный момент некоторого количества вещества – это векторная сумма дипольных моментов отдельных молекул. Подобные представления весьма продуктивны при рассмотрении поведения диэлектрических тканей во внешнем электрическом поле, создаваемом, например, аппаратами УВЧ или СВЧ.

Клеточные мембраны поляризованы как в спокойном, так и в возбужденном состоянии, и можно говорить о величине электростатического дипольного момента отдельных частей мембран. Но что касается векторной суммы дипольных моментов по всей клетке, и по сердцу в целом, то по-видимому такая сумма равна нулю. Подтверждение тому – то обстоятельство, что электрокардиограф ничего не регистрирует в промежутки времени между сердечными сокращениями.

Сердце проявляет внешнюю электрическую активность только на стадии сокращений, с опережением мышечного сокращения на 0,02 – 0,04 с, и для описания этой активности продуктивной оказалась модель токового диполя.

Токовый диполь имеет дипольный момент , где L – расстояние между полюсами (опять полюсами!) каковыми являются возбужденные и не возбужденные участки миокарда; I – сила ионного тока в межклеточной среде на таких промежутках. Направление вектора — от отрицательного полюса (возбужденный участок органа) к положительному (невозбужденный участок).

С точки зрения электрокардиографии в ее сложившемся состоянии, интегральный электрический вектор сердца (ИЭВС) – это векторная сумма дипольных моментов токовых диполей, с суммированием по всему объему сердца. В ходе сердечного сокращения ИЭВС меняется как по величине, так и по направлению в пространстве.

Отведением в электрокардиографии называется система из двух электродов, установленных на поверхности тела пациента и подключенных к электрокардиографу. Регистрируемая в любом отведении разность потенциалов является проекцией ИЭВС на линию, соединяющую электроды этого отведения.

Меняется вектор – меняются его проекции. Регистрируемые электрокардиографом изменения электрического потенциала соответствуют некоторым изменениям ИЭВС как по модулю, так и по направлению, в ходе сердечного сокращения.

В ситуации «вектор – его проекции» можно говорить о прямой и обратной задачах. Прямую задачу – переход от ИЭВС живого сердца к его меняющимся во времени проекциям в отведениях выполняет электрокардиограф.

Обратную задачу – воссоздание вектора ИЭВС по двум его проекциям для определенной стадии сердечного сокращения, Вам предстоит решить графически в ходе выполнения данной работы.

Опытный кардиолог имеет навыки суждений об ИЭВС и об отклонениях в его изменениях от нормы, анализируя лишь его проекции – записи ЭКГ в отведениях, и не прибегая к графическим построениям. Но возможность наблюдать этот вектор в ходе обследования, да еще в режиме реального времени – идея заманчивая.

Задача о непрерывном воссоздании вектора ИЭВС по двум его меняющимся проекциям – значениям потенциала в двух отведениях, — имеет техническое решение с помощью векторэлектрокардиографов.

Еще раз подчеркнем распространенное заблуждение. Многие считают, что регистрируемые на ЭКГ изменения электрической активности сердца – следствие изменений его формы в ходе сократительной деятельности. Между тем, измерения показали, что его электрическая активность начинает проявляться несколько раньше, чем появляются первые стадии сокращения, и в ходе сократительного цикла электрическая активность опережает механику сокращений. Так что изменения электрического статуса клеток – первичны, сокращения миокарда – вторичны, а изменения ИЭВС – следствие и того, и другого.

Кардиословарь. Электрическая активность сердца

У сердца есть естественный кардиостимулятор, который регулирует ритм сердца. Он находится в верхней части правого предсердия. Это своего рода набор специализированных электрических ячеек. Подобно свече зажигания автомобиля, кардиостимулятор генерирует несколько «искр» в минуту. Каждая «искра» проходит через специализированный электрический путь и стимулирует мышечную стенку четырех камер сердца, заставляя их сжиматься в определенной последовательности.

Если коротко описать принцип работы проводящей системы нашего сердца, то суть в том, что движение электрических импульсов по предсердиям обеспечивает сокращение предсердий, а по желудочкам — сокращение желудочков. А отсюда кровь направляется к лёгким и в системный кровоток.

А теперь немного подробнее

У здорового взрослого сердца в состоянии покоя АВ-узел посылает электрический сигнал, чтобы начать новое сердцебиение (с частотой 60-100 ударов в минуту). Отсюда сигнал, проходя через правое и левое предсердие, стимулирует к сокращению предсердия, и, таким образом, кровь перемещается в нижние камеры сердца — желудочки.

Электрический сигнал переходит от предсердий к желудочкам через группу клеток, называемую атриовентрикулярным (АВ) узлом, где замедляется. Это замедление обеспечивает желудочкам достаточно времени, чтобы полностью заполниться кровью. Затем электрический сигнал покидает АВ-узел и перемещается по пучку Гиса. И по правой и левой ветвям пучка быстро распространяется к желудочкам вашего сердца, заставляя их сжиматься и накачивать кровь в легкие и остальные части вашего тела.

Теперь желудочки восстанавливают свое нормальное состояние. Мышца перестает сокращаться, чтобы дать возможность сердцу заправиться кровью. Весь этот процесс — не что иное, как сердечный ритм. Такая передача электрических сигналов через сердце регистрируется посредством электрокардиограммы (ЭКГ).

Что может повлиять на частоту сердечного ритма?

Представьте себе автомобиль. Что увеличивает количество искр в минуту, создаваемое свечой зажигания? Все просто — нажатие на педаль газа. Это заставляет двигатель работать интенсивнее. В случае сердца адреналин действует как педаль газа и заставляет узел синуса увеличивать количество импульсов в минуту, что, в свою очередь, увеличивает частоту сердечных сокращений. Выброс адреналина контролируется нервной системой. Сердце в среднем совершает около 72 ударов в минуту, а во время напряжения, эмоционального стресса, лихорадки и т.д.может ускоряться. То же самое происходит, когда нашему организму требуется дополнительный импульс кровоснабжения. А вот замедление будет происходить во время отдыха или под влиянием определенных лекарств, например.

Кстати, хорошо тренированные спортсмены имеют тенденцию к более медленному сердечному ритму. Это еще раз доказывает то, что разумный интенсивный фитнес развивает сердечно-сосудистую систему и повышает выносливость всего организма.

Физиология сердца Свойства сердечной мышцы

КРОВО — И ЛИМФООБРАЩЕНИЕ

Доставка кислорода и питательных веществ к тканям и клет­кам млекопитающих животных и человека, а также выведение продуктов их жизнедеятельности обеспечиваются кровью, цир­кулирующей по замкнутой сердечно-сосудистой системе, состоя­щей из сердца и двух кругов кровообращения: большого и мало­го. Большой круг кровообращения начинается от левого желудоч­ка сердца, из которого артериальная кровь поступает в аорту. Пройдя по артериям, артериолам, капиллярам всех органов, кро­ме легких, она отдает им кислород и питательные вещества, а за­бирает углекислоту и продукты метаболизма. Затем кровь соби­рается в венулы и вены и через верхнюю и нижнюю полые вены поступает в правое предсердие.

Малый крут кровообращения начинается с правого желудоч­ка сердца, откуда венозная кровь направляется в легочную арте­рию. Пройдя через легочные капилляры, кровь освобождается от углекислоты, оксигенируется и уже в качестве артериальной по­ступает через легочные вены в левое предсердие.

Сердечная мышца обладает следующими свойствами: 1)автоматиейспособностью сердца ритмически сокра­щаться под влиянием импульсов, возникающих в нем самом; 2)воз­будимостьюспособностью сердца приходить в состояние воз­буждения под действием раздражителя; 3)проводимостьюспо­собностью сердечной мышцы проводить возбуждение; 4)сократи­мостьюспособностью изменять свою форму и величину под дей­ствием раздражителя, а также растягивающей силы или крови.

Автоматия

Субстратом автоматии в сердце является специфическая щечная ткань, илипроводящая система сердца,которая состоит изсинусно-предсердного(синоатриального)(СА) узла,располо­женного в стенке правого предсердия у места впадения в него верхней полой вены,предсердно-желудочкового(атриовентрикулярного)узла,расположенного в межпредсердной перегородке на границе предсердий и желудочков. От атриовентрикулярного узла начинается пучокГиса.Пройдя в толщу межжелудочковой перегородки, он делится на правую и левую ножки, заканчиваю­щиеся конечными разветвлениями —волокнами Пуркинье.Вер­хушка сердца не обладает автоматией, а лишь сократимостью, так как в ней отсутствуют элементы проводящей системы сердца.

В нормальных условиях водителем ритма, или пейсмекером, является синоатриальный узел. Частота разрядов синоатриально­го узла в покое составляет 70в 1минуту. Атриовентрикулярный узел —это водитель ритма второго порядка с частотой 40 — 50в 1 минуту. Он берет на себя роль водителя ритма, если по каким-ли­бо причинам возбуждение от СА не может перейти на предсердия при атриовентрикулярной блокаде или при нарушении проводя­щей системы желудочков. Если поражены все основные водители ритма, то очень редкие импульсы (20имп/с) могут возникать в во­локнах Пуркинье —это водитель ритма 3-го порядка.

Следовательно, существует градиент автоматии сердца,со­гласно которому степень автоматии тем выше, чем ближе распо­ложен данный участок проводящей системы к синусному узлу.

Электрическая активность клеток миокарда и проводящей системы сердца

Потенциал действия кардиомиоцитов начинается с быстрой риверсии мембранного потенциала, составляющего -90мВ и со­здаваемого за счет К+-потенциала, до пика ПД (+30мВ) (рис.11). Этофаза быстрой деполяризации,обусловленная коротким зна­чительным повышением проницаемости дляNa’1«, который лави­нообразно устремляется в клетку. Фаза быстрой деполяризации очень короткая и составляет всего 1—2мс. Начальный входNа+быстро инактивируется, однако деполяризация мембраны про­должается за счет активации медленных натрий-кальциевых ка­налов, а вход Са2+приводит к развитиюплато ПДэто специ­фическая особенность клеток миокарда. В этот период быстрые натриевые каналы инактивируются и клетка становится абсо­лютно невозбудима. Этофаза абсолютной рефрактерности.Од­новременно происходит активация калиевых каналов, а выходя­щие из клетки ионы К+создаютфазу быстрой реполяризации мембраны.

Ускорение процесса реполяризации происходит за счет за­крытия кальциевых каналов. В конце периода реполяризации по­степенно закрываются калиевые каналы и реактивируются на­триевые. Это приводит к восстановлению возбудимости кардиомиоцита и возникновению относительной рефракторной фазы. Длительность ПД кардиомиоцита составляет 200 — 400мс.

Рис. 11. Схемы потенциалов действия различных отделов сердца, кривой сокращения и фаз возбудимости сердечной мышцы: Асхема потенциала действия клетки миокарда (/),кривой сокра­щения (II)и фаз возбудимости (III) сердечной мышцы; 1 —потенциал действия клетки миокарда: / —быстрая деполяризация; 2 —пик, 3 —плато, 4 —быстрая ре поляризация;II —кривая сокращения: а —фаза сокращения,бфаза расслабления;III —кривая возбудимости: 5 —абсолютная рефракторная фаза, б —отно­сительная рефракторная фаза, 7 —фаза супернормальной возбудимости;Бсхема потенциала действия клетки пейсмекера (синоаурикулярного узла): МДП —максимальный диастолический потенциал; МДД —медлен­ная диастолическая деполяризация

Калий-натриевый насос, создающий потенциал покоя или мембранный потенциал миокардиоцита, может быть инактивирован под действием сердечных гликозидов (препараты наперстян­ки, строфантина), которые приводят также к повышению внутри­клеточной концентрации Na+, снижению интенсивности обмена внутриклеточногоCa2+на внеклеточныйNа+, накоплению Ca2+в клетке. В результате сократимость миокарда становится больше. Ее можно увеличить и за счет повышения внеклеточной концент­рации Са2+и с помощью веществ (адреналин, норадреналин),ус­коряющих вход Са2+во время ПД. Если удалить Са2+из внешней среды или заблокировать вход Ca2+во время ПД с помощью таких веществ —антагонистов кальция, как верапамил, нифедипин и др., то сократимость сердца уменьшается.

Клетки проводящей системы сердца и, в частности, клетки пейсмекера, обладающие автоматией, в отличие от клеток рабо­чего миокарда-кардиомиоцитов могут спонтанно деполяризоваться до критического уровня. В таких клетках за фазой реполяризации следует фаза медленной диастолической деполяриза­ции. (МДД),которая приводит к снижению МП до порогового уровня и возникновению ПД. МДД —это местное, нераспрост­раняющееся возбуждение, в отличие от ПД, который является

распространяющимся возбуждением.

Таким образом, пейсмекерные клетки отличаются от кардиомиоцитов: 1)низким уровнем МП —около 50—70мВ, 2)наличи­ем МДД, 3)близкой к пикообразному потенциалу формой ПД,4)низкой амплитудой ПД — 30-50мВ без явления риверсии (овершута).

Особенности электрической активности пейсмекерных кле­ток обусловлены целым рядом процессов, происходящих на их мембране. Во-первых, эти клетки даже в условиях «покоя» имеют повышенную проницаемость для ионов Na+, что приводит к сни­жению МП. Во-вторых, в период реполяризации на мембране от­крываются только медленные натрий-кальциевые каналы, так как быстрые натриевые каналы из-за низкого МП уже инактивирова-ны. В клетках синоатриального узла в период реполяризации бы­стро инактивируются открытые калиевые каналы, но повышает­ся натриевая проницаемость, на фоне которой и возникает МДД, а затем и ПД. Потенциал действия синоатриального узла распро­страняется на все остальные отделы проводящей системы сердца.

Таким образом, синоатриальный узел навязывает всем «ведо­мым» отделам проводящей системы свой ритм. Если возбуждение не поступает от главного пейсмекера, то «латентные» водители ритма, т.е. клетки сердца, обладающие автоматией, берут на себя функцию нового пейсмекера, в них также зарождается МДД и ПД, а сердце продолжает свою работу.

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *