Чем измеряют пульс – норма частоты пульсовых колебаний, что делать при отклонении, профилактика сердечных заболеваний

Содержание

Пульс под контролем? Чем и зачем измерять пульс в движении / iCover.ru corporate blog / Habr

Сейчас на рынке появилось очень большое количество самых разнообразных носимых гаджетов для измерения пульса. Понять в чем между ними принципиальная разница, и для каких целей лучше подойдет одно устройство, а для каких – другое, становится задачей весьма не тривиальной.

Мы постараемся описать основные технические особенности, которые определяют функционал пульсометров, чтобы неподготовленный пользователь не переплатил за устройство с избыточным функционалом, или не надеялся с помощью простого устройства решить задачи, которые ему не под силу.

Итак, несмотря на большое разнообразие производителей и моделей, фактически все устройства для измерения пульса, можно разделить по паре основных признаков:
— используемая технология измерения пульса;
— используемый протокол беспроводной передачи данных;

Определяющий фактор в части точности, качества, удобства измерения пульса – конечно используемая для этого технология.
Фактически единственный обзор технологий для измерения пульса в рунете, удалось найти только на geektimes (раз и два), что уже не удивляет, а становится правилом. Не все из возможных технологий, могут использоваться для описываемых нами мобильных устройств, поэтому рассматриваем всего две:

Электрокардиография – регистрация изменения электрических полей, возникающих при работе сердца, для выявления разницы потенциалов необходимо проводить измерения как минимум в двух точках тела, по возможности удаленных друг от друга

На рисунках приведены два типа таких устройств, несмотря на внешние различие, технология измерения, и соответственно точность – близки.

Плетизмография – измерение пульса на основе регистрации изменения объема в органе, наполненном кровью (как правило – в кровеносных сосудах). Измерять возникающую при этом пульсовую волну можно с помощью механических, оптических или импедансных (электродных) методов. Для мобильных гаджетов применяется почти исключительно оптическая плетизмография – Фотоплетизмография.

В таблице кратко собраны основные характеристики для каждой из технологий измерений пульса:

Параметр Электро-кардиосигнал (измерение в двух точках) Фото-плетизмография
Преимущества Высокая точность Удобство использования
Недостатки Неудобство использования / Необходимость заменять ремешок с контактами (зависит от производителя и интенсивности использования: через месяц… год) Низкая точность / Зависимость точности измерений, от качества установки датчика, от погоды (прямые лучи солнца сбивают показания), от влажности
Область применения Спорт профессиональный / Спорт любительский Спорт любительский / Спорт «for fun» / Постоянный контроль пульса

Чтобы полученные показания пульса не оставались в датчике пульса, а могли в реальном времени демонстрироваться пользователю, необходимо обеспечить беспроводную передачу данных от датчика, до устройства отображения информации, либо от совмещенного устройства датчик+часы/фитнес трекер – на компьютер для дальнейшего анализа.

Сейчас, фактически все современные датчики используют одну из двух, или обе сразу технологии передачи данных:

Bluetooth/Bluetooth 4.0 BLE – протокол беспроводной передачи данных, используется в большом количестве устройств, для передачи данных между устройствами, или синхронизации их с компьютером.

Ant/Ant+ — специализированный протокол беспроводной передачи данных разработанный специально для обмена данных между устройствами предназначенными для спорта/здоровья.
В таблице перечислены основные отличия каждой технологии

Протокол передачи данных Bluetooth 4.0 (BLE) ANT/ANT+
Преимущества Широкое распространение / Открытый протокол Низкое энергопотребление / Поддержка сложных топологий соединения
Недостатки Высокое энергопотребление Закрытый протокол (Dynastream-Garmin)
Область применения Интеграция датчиков пульса от независимых производителей, с большим количеством моделей смартфонов/часов и т.п. Интеграция специализированных датчиков, с беговыми приборами (Polar / Garmin / Suunto и т.п.) и некоторыми смартфонами (последние модели Sony/Samsung и др.)

Теперь, представляя возможности каждой технологии в части измерения пульса, и передачи данных, останется только определить, что именно реализовано в том приборе, который понравился вам по дизайну, или по наличию некоторых дополнительных возможностей.
Поскольку все устройства перечислять слишком долго и неизбежны повторы в виде практически идентичных приборов от разных производителей, в финальной таблице перечислим лишь некоторые, наиболее типичные и оригинальные модели устройств:

Прибор Runtastic Heart
Rate Monitor
Garmin Heart
Rate Monitor
Jabra Sport
Pulse
Mio Alpha 2
Внешний вид устройства
Описание устройства Runtastic Garmin HRM Jabra Sport Pulse Mio Alpha 2
Технология измерения пульса Электро-кардиосигнал Электро-кардиосигнал Фото-плетизмография Фото-плетизмография
Технология передачи данных Bluetooth 4.0 Ant+ Bluetooth 4.0 Bluetooth 4.0
Дополнительные
функции
Интеграция с беговыми приборами GARMIN Forerunner Полноценные наушники + гарнитура Водонепроницаемость
Область применения Любительский спорт / Сохранение истории тренировок с помощью приложений на телефоне (Runtastic, Endomodo и т.п.) Профессиональный /
Любительский спорт / Сохранение графиков пульса и трека в облаке Garmin, или с помощью телефонных приложений
Любительский спорт / Спорт «for fun» / Сохранение пульса и трека в телефонных приложениях Любительский спорт / Постоянный мониторинг пульса
Время работы датчика 1-2 года 2-3 года До 5 часов 20… 24 часа
Порядок стоимости датчика в России 90..110 USD 130..150 USD 210..230 USD 200..220 USD

Взглянув на таблицу, легко сделать выбор, исходя из целей, для которых приобретается пульсометр.

Если вы хотите в принципе понять, что такое пульс, как он меняется в течении дня, или во время спортивных занятий, научится управлять нагрузкой в соответствии со своим пульсом – можно попробовать самый простой ремешок типа Runtastic, который даст вам ответы на эти вопросы, и позволит начать накапливать историю ваших занятий.

Если вы точно знаете, что будете со временем использовать показания пульсометра все чаще, и в недалеком будущем перейдете на использование специальных беговых приборов, демонстрирующих всю статистику тренировки (не только пульс, но и темп/скорость/время/расстояние и др.) на экране часов, ваш выбор для первого шага: датчик пульса от одного из лидеров

Garmin / Polar / Suunto.
Первоначально его можно использовать с одним из беговых приложений для смартфона, а по мере необходимости – докупить полноценный прибор, для контроля тренировочного процесса, для примера Garmin 910XT / Polar RCX5 / Suunto Ambit 3

Отдельно стоит рассмотреть уникальные на настоящий момент наушники, Jabra Sport Pulse.
Благодаря развитию качества датчиков, основанных на фотоплетизмографической технологии измерения пульса, появилась возможность, интегрировать этот оптический датчик в наушник, и измерять пульс прямо внутри ушной раковины.


С учетом беспроводной интеграции наушников с телефоном, получаем компактный и удобный датчик пульса и качественные беговые наушники, без лишних проводов, и дополнительных устройств для измерения пульса.
Для тех, кто привык бегать с музыкой, это решение сейчас будет самым оригинальным и удобным.

Дополнительной особенностью устройства, является возможность одновременно подключить его сразу к нескольким приборам – к примеру к смартфону или плееру, для проигрывания музыки, и к умным часам или беговому прибору, для передачи показаний о пульсе.

Mio Alpha 2 – этот проект с Kickstarter, сделал возможным то, что еще недавно казалось не очень близким будущим – использовать компактный оптический датчик для измерения пульса прямо на руке. Наилучшим образом подойдет для того, кто хочет наблюдать за своим пульсом весь день, а не только в определенные тренировочные периоды, к тому же новая модель выглядит современно и красиво, и вполне может использоваться как Smart watch, с дополнительной функцией, которую не сумеют воспроизвести умные часы от грандов индустрии.

Надеемся, информация будет вам полезна и позволит сделать правильный выбор.

UPDATE: По комментариям непосредственных пользователей, были уточнены формулировки по тексту, и выяснено, что протокол передачи данных, используемый Polar, не является ANT/ANT+, и только самые последние модели датчиков поддерживают BT. Остальные датчики Polar используют собственные протоколы передачи данных, хотя и используют тот же частотный диапазон.

Как умные часы, спортивные трекеры и прочие гаджеты измеряют пульс? Часть 2

Привет всем!

Продолжаем увлекательное путешествие в мир измерителей пульса. В первой части мы рассказали про методы измерения на основе ЭКГ и плетизмографии — самые популярные на рынке. Метод оптической плетизмографии применен и в нашем проекте EMVIO – часах, которые измеряют ваш стресс.

Компания проекта EMVIO стартует на платформе Кикстартер 17 марта 2015 года. Мы практически завершили всю организационную работу, сейчас ведется финальная верстка странички на Кикстартере. Вы можете подписаться на рассылку на промо-сайте проекта, что бы быть в курсе всех новостей.

Предлагаем поддержать наш проект. Все подробности и ценовые предложения будут представлены в отдельном посте перед началом компании. Для самых первых (Early bird) бэкеров мы подготовили ограниченное количество часов EMVIO за $129 USD.

А сейчас продолжим. Как же еще можно измерить пульс?

1. Измерение пульса на основе сфигмографии

Этот способ известен всем без исключения, просто не все знают, что он так называется. Способ сфигмографии реализует регистрацию артериального пульса по деформации стенки сосуда артерии. В итоге получается кривая аналогичная плетизмографии. Регистрацию пульса нужно проводить в местах, где артерии подходят близко к поверхности кожи, например с тыльной стороны запястья или выше локтя, где лучевая артерия идет одним стволом. Биение стенки артерии очень мало, поэтому для усиления сигнала в конце 19 века был изобретен оригинальный способ: пережатие артерии до уровня, когда артерия еще пропускает кровоток, но создает препятствие ударной волне крови. В этом случае возникали сильные пульсации, которые можно фиксировать механическими средствами.

На главное фото поста вынесено изображение первого устройства — смигмографа, доведенного до практического применения. Похоже на метатель дротиков Ван-Хельсинга. Изобретение французского физиолога Этьен-Жюля Маре. Практически носимый гаджет 1863 года выпуска. Аппарат придавливал артерию с помощью регулировочного механизма, механическим способом усиливал амплитуду пульсовой волны и производил перьевую запись механических колебаний на бумагу. Это был прообраз знакомой всем манжеты для измерения давления.


Вот тут посмотрите анимированный принцип работы этого устройства и его конструкцию в 3D

В целом процессы, которые происходят в сосудах артерии при ее пережатии, довольно сложны. Изучение этих вопросов актуально, если вы хотите измерять давление. Когда нужен просто пульс, то схему регистрации можно упростить: убрать манжету, акустический датчик (микрофон) или обычный стетоскоп заменить механическим датчиком – пьезоэлементом. Этот элемент работает в режиме прямого пьезоэлектрического эффекта (деформация -> поляризация) и способен регистрировать деформации на уровне микрометров.

Пьезосенсор
Идея способа на основе пьезоэлемента хорошо раскрыта в патенте Wrist plethysmograph US 20070287923 A1. На картинке показана схема устройства. На датчик работает вся конструкция устройства — ремешок обеспечивает растягивающее усилие на краях пьезодатчика и выполняет роль своеобразной манжеты, корпус придает необходимую жесткость и опору.


Патентованный способ регистрации пульса на основе пьезодатчика.

Вычисление пульса по сфигмограмме такое же, как в плетизмографии, так как получаемые пульсовые кривые практически идентичны.
При практической реализации могут быть нюансы, связанные с индивидуальными особенностями. Есть интересное исследование, в котором изучалась зависимость амплитуды пульсового сигнала от силы давления пьезодатчика, индивидуальных параметров руки пациентов и т.п. Датчик к запястью подводился шаговым двигателем с обратной связью и, таким образом, нормировалось сила нажатия. В статье указывается, что разброс индивидуальных давлений довольно высокий, а также возникают проблемы с регистрацией у людей с избыточным весом с увеличенной толщиной жирового подкожного слоя. Есть над чем поработать.

HealBe
Принцип механического измерения пульса реализован в нашумевшем браслете HealBe Go.


Браслет HealBe Go использует пьезодатчк для измерения пульса.

Согласно заявленным параметрам, сигнал пульсовой волны считывается с запястья с помощью пьезоэлектрического датчика давления. В научно-техническом отчете разработчиков HealBe приведен пример пульсовой кривой с датчика, форма волн вполне типовая для плетизмографии и сфигмографии. Что интересно, ни в одном известном нам гаджете такой способ не используется. Так что HealBeGo можно сказать пионеры.

Гибкие датчики
Есть концепты и научные исследования по применению подобных датчиков. Вот пример статьи, где описана реализация ультратонкого гибкого датчика на основе золотых нанотрубок.


При изгибе поверхности датчика возникает дельта тока. Этой дельты достаточно, чтобы фиксировать динамическую составляющую давления от 13 Па (для сравнения: 1 Па (Н/м2) равен 7,50062 мкм ртутного столба) (отсюда, микс из figure 1 и 6).

Датчик фиксируется на коже в районе запястья и регистрирует пульсовые волны. Исследование датчика показало, что на амплитуду сигнала влияет уровень текущего звукового фона, например голос и музыка, что вполне ожидаемо.

Вот еще пример датчика на основе 2D-массива пьезоячеек.


Микротехнологии в действии (отсюда, взято из figure 1).

Этот датчик более совершенен и функционально закончен: содержит схему первичного усиления и имеет контакты для подключения. Вот примеры наклейки датчика на различные части тела.


Датчику доступны любые точки (отсюда, взято из figure 4)

Если снимать сигнал с запястья и шеи, то можно реализовать метод измерения кровяного давления на основе вычисления относительной скорости пульсовой волны (pulse wave velocity (PWV)) между артерией на шеи и артерией на запястье (по сдвигу фаз между сигналами). Собственно в статье датчик позиционируется для решения именно этой задачи. Вот вам хорошие идеи для будущих гаджетов-пульсомеров.

Возможно скоро мы увидим гибкие полупрозрачные браслеты для измерения пульса. Гибкие аккумуляторы уже появились.

2. Измерение пульса на основе баллистокардиографии

Метод баллистокардиографии использует эффект детонации тела от ударной волны при прокачке крови по сосудам. В клинической практике применялся не ради измерения пульса, а для анализа динамических показателей кровотока.


Еще один мегадевайс из прошлого. Страшно? (картинка взята отсюда)

Сигналом являются механические колебания тела под действием ударной волны от прокачки крови по сосудам. Думаю многие, лежа в постели, замечали этот эффект. Вот тут очень простая демонстрация принципа работы в фотографиях.

На современном уровне этот способ был реализован в виде умной подушечки Darma для контроля осанки. Со времен института у меня в памяти баллистокардиография ассоциировалась с громоздким устройством, и я был приятно удивлен этим проектом в плане выбора способа регистрации пульса. Проект хорошо выступил на Кикстартере.


Девушка в зеленом платье следит за своей осанкой с помощью Darma. Почувствуйте разницу с мужиком на качающемся столе, за это мы и любим такие проекты.

Пульс выступает скорее как дополнительный параметр, основное – это контроль правильности осанки. На их рекламных материалах представлен характерный вид баллистокардиограммы (BCG) и ее особые точки. Значения пульса вычисляются между локальными максимумами (точка J). Интересное устройство, но если вы постоянно вертитесь и ерзаете на своем стуле, это решение не для вас.

Вот еще гаджет Beddit. Он выполнен в виде ремня и кладется на кровать под тело человека во время сна.


Девушка в белом и гаджет Beddit. Для мужчин – версия кардинально черного цвета.

Прибор позиционируется как монитор сна. Он может регистрировать пульс, кривую дыхания, фазы сна. Также реализован “умный будильник”. Вот так выглядит его сигнал.


Сигнал баллистокардиограммы с Beddit. На фоне дыхательных колебаний видны детонации сердца (взято из отчета.)

В принципе такие устройства можно встраивать прямо в матрасы или выполнять в виде детских пеленок, одеял и т.п. Для двуспальных вариантов можно зонировать области регистрации. Будить вибромотором.

3. Измерение пульса на основе фонокардиоскопии

Способ основан на регистрации акустических шумов при биении сердца и работе его клапанов. С помощью этого способа проводят диагностику нарушений в работе сердца и клапанов. Самая простая реализация — приложить микрофон или обычный стетоскоп к сердцу, зафиксировать его и слушать низкочастотные биения-шумы.


Послушайте, как бьется сердце. Кадр из фильма “Бриллиантовая рука.”

В принципе для регистрации пульса достаточно считать акустические удары, но есть небольшой нюанс. Сигнал фонокардиоскопии содержит в себе так называемые тона – осцилляции, связанные с систолой-диастолой сердца, работой ее клапанов и просто непериодические шумы. На каждый сердечный цикл в норме приходится несколько тонов, обычно выделяют 4 тона (их обозначают римскими цифрами). Основные: I тон – начало систолы, II тон – начало диастолы. В англоязычной литературе различают сегменты S1 (first heart sound) – начало систолы и S2 (second heart sound) – начало диастолы. В зависимости от места прослушивания относительная амплитуда тонов может изменяться. Вот пример сигнала.


Примеры сигнала фонокардиоскопии: слева синхронно с ЭКГ и основные тона (отсюда), справа пример автоматизированной сегментации сигнала в норме. (отсюда)

Конечно сейчас, когда УЗИ-аппарат с методом диагностики на основе эффекта Доплера стал обычным медицинским устройством, доступным в любой поликлинике и больнице, фонокардиография несколько потеряла свою клиническую значимость.

Однако стетоскопы никуда не делись и являются самым популярным и доступным средством первичного осмотра. Поэтому вполне естественно, что разработчики гаджетов взялись за них. У вас в стетоскопе нет блютуса? Тогда мы идем к вам! На рынке предлагается множество таких устройств.

Вот пример такого гаджета-гибрида от фирмы Thinklabs Medical LLC.


Версии умных стетоскопов Thinklabs: от имитации классики, до минимализма.

Большой плюс такого способа в том, что этот функционал доступен практически в любом телефоне. Датчик–микрофон уже на борту. Зачем тогда стетоскоп? Неудивительно, что уже разработана программа для IPhone, которая называется iStethoscopePro.


Экраны iStethoscopePro (разработчик Peter_J._Bentley).

Оказалось, что это довольно популярное приложение, и что самое интересное, по словам Питера Бентли, им пользуются врачи, т.к. оно позволяет записывать и воспроизводить шумы сердца. Можете испытать, как оно работает. Вот пример программы SKEEPER Heart Rate под Андроид.


Экраны SKEEPER Heart Rate. Прижми и слушай.

Все-таки интересно, как смартфоны постепенно вбирают в себя функциональность, которая изначально не планировалась. В следующем разделе вы увидите пример фантастической возможности применения смартфона для регистрации пульса.

4. Измерение пульса на основе биорадиолокаторов

Весьма оригинальный и, можно сказать смело, инновационный способ регистрации пульса.


Возможно медицинский трикордер в Стартреке был оснащен именно таким датчиком. (Кадр из сериала Star Trek: The Original Series)

Используется классическая технология радиолокации на основе сверхширокополосных (Ultra-Wide Band) сигналов. Излучается сигнал, он отражается от внутренних органов, грудной клетки и сердца, соответственно время прибытия (time-of-fight) отраженного сигнала будет зависеть от дистанции до антенны, подвижности грудной клетки и сердца.


Модель формирования временных характеристик отраженного UWB сигнала в грудной клетке (отсюда).

Анализируя низкочастотную периодическую модуляцию задержки можно выделить дыхательную и пульсовую составляющую. Вид сигнала и его спектральная плотность мощности показаны на рисунке. Сигнал формируется по первой производной функции Гаусса.


UWB сигнал и границы спектрального диапазона (отсюда).

Один из первых патентов на такое устройство датирован 1996 годом. Автор Thomas E. McEwan US 5573012 A Body monitoring and imaging apparatus and method.


Функциональная схема устройства пульсового радара и вид выходных сигналов.

На сегодняшний день работы по исследованию применения UWB радаров в медицине выходят регулярно. Можно загуглить UWB heart rate radar.

В России есть группа UWBgroup.ru, на базе Научно-исследовательского центра Сверхширокополосных технологий Московского авиационного института (НИЦ СШП МАИ), которая занимается разработкой медицинских радаров. Работу группы можно посмотреть по публикациям на их сайте. Вот пример прототипа такого радара для измерения пульса, который разработан участниками этой научной группы.


Внешний вид и расположение СШП радара (из тезисов).

Сейчас эта тема весьма популярна, с учетом того, что сам по себе диапазон UWB очень перспективен для передачи данных на гигабитный скоростях (сверхширокополосная связь) и на рынке появились недорогие радиопередающие модули.

В итоге — поистине фантастические возможности! Мониторинг пульса сквозь стены! Поиск живых людей под завалами. Использование смартфонов в качестве генератора зондирующего сигнала! Антитеррористические многолучевые системы для выявления подозрительных лиц.


Биорадиолокация для спецприменений. Смартфон может использоваться как генератор зондирующего радиосигнала (отсюда). Конечно это только идея.

Собаки в тренде.
На сегодняшний день нам удалось найти только одно подобное устройство, доведенное для массового продукта. Это собачий браслет Voyce.


Браслет-ошейник для мониторинга здоровья вашей собаки.

Для людей пока ничего подобного не предлагается. Видимо, есть проблемы с сертификацией таких излучателей для использования людьми, но возможно это временные проблемы. В общем, собакам и прочим домашним любимцам носить уже можно.

Ну вот вроде и все. Технологии не стоят на месте, и мы еще обязательно увидим необычные решения и оригинальное “прочтение” классических методов регистрации пульса на своих запястьях.

PS: Да, еще пульс можно измерять с помощью ультразвука, мониторя сокращение стенок сердца. Это штатная функция любого кардиологического УЗ-аппарата, но в носимых гаджетах пока не применяется, хотя имеются портативные, размером с небольшой фен. Но всё-таки это уже почти полноценный аппарат для клинической диагностики.

Пока! Всем отличного здоровья!
И еще раз пригашаем вас на сайт нашего проекта EMVIO.

Пульсометр — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 ноября 2018; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 2 ноября 2018; проверки требуют 4 правки. Пульсомер с беспроводным нагрудным датчиком Наручный пульсомер с датчиком на пальце

Пульсо́мер, или монитор сердечного ритма, — устройство персонального мониторинга частоты сокращений сердца в реальном времени или записи его для последующего исследования. Широко используется в тренировках и соревнованиях любителями и спортсменами циклических видов спорта, таких как беговые виды легкой атлетики (особенно бег по шоссе), лыжные гонки, велоспорт, плавание.

Первые образцы данного устройства состояли из коробки и двух электродов крепившихся на грудную клетку. Основным назначением в спортивных тренировках является контроль пульса — звуковой сигнал сообщает о том, что можно добавить темп, или наоборот, пульс слишком высок. Обычно также есть возможность проанализировать, сколько времени пульс был в заданной зоне, ниже её и выше.

Первый беспроводной ЭКГ монитор сердечного ритма был изобретен в 1977 году в качестве учебного пособия для Финской национальной лыжной сборной, розничная продажа персональных сердечных мониторов начата с 1983 года.[1]

Современные пульсомеры обычно состоят из двух элементов: нагрудного ремня-датчика и приёмника на запястье, GPS-навигатора или мобильного телефона. Обычно для получения хорошего контакта электроды датчика смачиваются водой или специальным гелем. Почти все пульсомеры имеют дополнительными функции: часы, секундомер, таймер, календарь, статистика времени нахождения пульса в заданных зонах, звуковая сигнализация выхода пульса из заданной зоны. При вводе возраста, веса и роста прибор предлагает калькуляторы индекса массы тела, сожженных калорий, сожженного жира, причем последний активизируется обычно только при пульсе выше 120 уд/мин. Зоны пульса можно выбрать из предложенных вариантов для различных степеней подготовки или задать по своему усмотрению.

Более продвинутые модели пульсомеров предлагают измерения скорости на тренировке, среднего и максимального пульса, интенсивности и частоты дыхания для оценки параметров, связанных с фитнес-тренировкой, память круговых тренировок. Если приёмником является GPS-навигатор, то данные можно сопоставить со скоростью перемещения, скоростью подъёма, высотой и пр.

Нагрудный датчик[править | править код]

Нагрудный датчик — самый точный датчик для определения пульса. Крепится на груди с помощью специального ремня, имеет автономный источник питания, запускаемый при появлении пульса. Передаёт сигнал на расстояние до 70 см в наручные часы-приёмник. Кисти рук остаются свободными.

Встроенный датчик[править | править код]

Пульсомеры без нагрудного датчика в настоящее время позволяют определить пульс просто коснувшись двух электродов на корпусе пульсомера в течение нескольких секунд. Данные приборы популярны из-за удобства и простоты использования, хотя они не дают такой же высокой точности, как пульсомеры, которые используют нагрудный датчик.

Датчик пульсации крови[править | править код]

Датчик на мочку уха или на палец. Определяет пульс по пульсации крови в тканях.

Проводной датчик[править | править код]

Датчик соединен с устройством отображения посредством провода, данная конструкция отличается надежностью, так как защищена от помех.

Беспроводной датчик[править | править код]

Данные от датчика передаются по радиоканалу как в аналоговом так и цифровом виде. Недостатком является необходимость смены элементов питания, а также возможное нарушение передачи данных в условиях сильных радиопомех, движении под линиями электропередач.

Как работает пульсометр в спортивных часах

В то время, когда медицина не имела современных технических средств диагностики, пульс измеряли, прикладывая палец к артерии, и считали количество толчков стенки артерии через кожу за определенный промежуток времени — обычно 30 секунд или одну минуту. Отсюда и пошло название этого эффекта — pulsus (лат. «удар»), измеряющийся в ударах в минуту.


Существует много методик определения пульса, но самые известные — прощупывание пульса на запястье, на шее, и в области сонной артерии.

После появления электрокардиографа (ЭКГ), пульс стали вычислять по сигналу электрической активности сердца, замеряя длительность интервала (в секундах) между соседними зубцами R на ЭКГ, а затем пересчитывая в «удары в минуту» по простой формуле: ЧСС = 60/(RR-интервал).

Электрокардиограмма может многое сказать о нашем сердце и помимо пульса, но для снятия и расшифровки ЭКГ нужны оборудование и кардиолог, которых не возьмешь с собой на пробежку. К счастью, в современном мире практически каждый может позволить себе пульсометр, который будет определять частоту пульса во время бега и в состоянии покоя.

Как работает пульсометр

Измерение пульса по электрокардиосигналу

Электрическая активность сердца была обнаружена и описана в конце 19 века, а уже в 1902 году Виллем Эйнтховен стал первым, кто ее технически зарегистрировал с помощью струнного гальванометра.


Помимо этого, Эйнтховен впервые записал электрокардиограмму (он сам дал ей такое название), разработал систему отведений и ввел названия сегментов кардиограммы. За свои труды в 1924 году он стал лауреатом Нобелевской премии.


В современной клинической практике для регистрации ЭКГ используют различные системы отведений (то есть схемы прикрепления электродов): с конечностей, грудные отведения в различных конфигурациях и т.д.

Для того чтобы измерить пульс, можно использовать любые отведения — на основании этого принципа были разработаны спортивные часы, умеющие определять ЧСС.

Ранние модели пульсометров состояли из коробочки (монитор) и проводов, крепящихся к груди. Первый беспроводной ЭКГ-монитор был изобретен в 1977 году, и стал незаменимым помощником в тренировках сборной Финляндии по лыжным гонкам. В массовую продажу первые беспроводные пульсометры поступили в 1983 году, с тех пор прочно заняв свою нишу в любительском и профессиональном спорте.


При проектировании современных спортивных гаджетов система отведений была упрощена до двух точек-электродов, а самым известным вариантом такого подхода стали спортивные нагрудные датчики в виде ремешка (HRM strap/HRM band).

Для получения стабильного и качественного сигнала необходимо смочить «электроды» на нагрудном ремне водой.

В таких ремешках электроды выполнены в виде двух полосок из проводящего материала. Ремешок может быть частью всего устройства или пристегиваться к нему застежками. Значения пульса, как правило, передаются по Bluetooth на спортивные часы или смартфон по протоколу ANT+ или Smart.


Измерение пульса с помощью оптической плетизмографии

Сейчас это самый распространённый способ измерения пульса с точки зрения массового применения, реализованный в спортивных часах, трекерах, мобильных телефонах. А первые попытки использования этой технологии предпринимались ещё в 1800-х годах.


Сужение и расширение сосуда под действием пульсации кровотока вызывают соответствующее изменение амплитуды сигнала, получаемого с выхода фотоприемника.

Способ широко используется в больницах, позже технология перешла и в бытовые устройства — компактные пульсоксиметры, регистрирующие пульс и насыщение кислородом крови в капиллярах пальца. Прекрасно подходит для периодических измерений пульса, но совершенно не подходит для постоянного ношения.

Пульсометры

Идея измерения пульса с запястья спортсмена с помощью оптической плетизмографии без дополнительного ношения нагрудных ремешков выглядела очень заманчиво. Первыми эту идею реализовали в часах Mio Alpha, которые провозгласили свое устройство прорывом и новым витком в измерении пульса. Сам модуль измерительного датчика был разработан компанией Philips.


Оптическая технология измеряет пульс с помощью светодиодов, которые оценивают кровоток на запястье. Это означает, что вы можете измерять пульс без использования нагрудного датчика. На практике это работает так: оптический сенсор на обратной стороне часов излучает свет на запястье с помощью светодиодов, и измеряет количество рассеянного кровотоком света.

Метод регистрации пульса для фотоплетизмографических датчиков

Для измерения пульса важна область с максимальным поглощением — это диапазон от 500 до 600 нм. Обычно выбирается значение 525 нм (зеленый цвет). Зеленый светодиод датчика пульса – самых ходовой вариант в смарт-часах и браслетах.

Сейчас эта технология хорошо отработана и внедрена в серийное производство. Спектр появившихся устройств с подобной технологией достаточно широк (смартфоны, браслеты-трекеры, часы), а производители спортивных устройств тоже не отстают – все наиболее значимые компании расширяют линейку пульсометров моделями с оптическими датчиками.


Ошибки при работе оптических датчиков

Считается, что оптические датчики достаточно точно определяют пульс при ходьбе и беге. Однако, при повышении частоты пульса, скажем, до 160 уд/мин, кровоток настолько быстро проходит через область датчика, что измерения становятся менее точными.

Помимо этого, на запястье, где не так много ткани, но много костей, связок и сухожилий, любое снижение кровотока (например, в холодную погоду) может исказить работу оптического датчика пульсометра.

В одном небольшом исследовании был проведен сравнительный анализ точности нагрудных и оптических датчиков пульсометров. Испытуемых разделили на две группы, в одной группе пульс измерялся с помощью нагрудного датчика, а в другой — с помощью оптического. Обе группы проходили тест на беговой дорожке, где они сначала шли, а потом бежали, в этом время регистрировалась частота пульса. В группе с нагрудным кардиодатчиком точность измерения ЧСС была 91%, тогда как в группе с оптическим датчиком она составила лишь 85%.

По мнению главы компании Mio Global, в настоящее время ни один из датчиков пульсометра не сравнится в точности с нагрудным ремнем.

Нельзя забывать и о специфических ситуациях, когда оптический датчик может не работать. Надетые поверх беговой куртки часы, наличие татуировки на запястье, неплотно прилегающие к коже часы, тренировка в спортзале — всё это может привести к погрешностям в измерении пульса с помощью оптических датчиков.

Несмотря на это, технологический прогресс в измерении ЧСС привел к появлению полезной альтернативы нагрудным ремням, и при устранении ряда недостатков оптических датчиков мы получим еще один мощный и точный инструмент наблюдения за пульсом во время занятий спортом.

Какие беговые показатели позволяет получить пульсометр

Строго говоря, продвинутая беговая динамика измеряется при наличии нагрудного ремня. Внешне обычный, внутри датчик состоит из трансмиттера и акселерометра, благодаря которому и происходит анализ движения бегуна. Те же самые акселерометры есть в телефонах, футподах, браслетах-трекерах.


К продвинутым беговым показателям относят три величины: время контакта с землей (ground contact time), вертикальные колебания (vertical oscillation) и частоту шагов, или каденс (cadence).

Время контакта с землей (ground contact time, GCT) показывает как долго ваша стопа находится на поверхности земли во время каждого шага. Измеряется в миллисекундах. Типичный бегун любитель тратит на контакт с поверхностью 160-300 миллисекунд. При повышении скорости бега значение GCT укорачивается, при замедлении – возрастает.

Существует взаимосвязь между временем контакта с землей и частотой развития травм, а также мышечным дисбалансом у бегуна. Уменьшение времени контакта с землей снижает частоту травм. Одним из наиболее действенных способов уменьшить этот показатель считается укорочение шага (повышение каденса), укрепление ягодичных мышц и включение коротких спринтов в программу тренировок.

Вертикальные колебания (vertical oscillation, VO). Посмотрите на любого профессионального бегуна — вы увидите, что верхняя половина их туловища совершает совсем незначительные движения, в то время как основную работу по перемещению бегуна выполняют ноги.

Вертикальные колебания определяют насколько ваша верхняя половина «подпрыгивает» при беге. Эти подпрыгивания измеряются в сантиметрах относительно какой-то фиксированной точки (в случае нагрудного ремня — это сенсор, встроенный в нагрудный датчик). Считается, что наиболее экономичная техника бега предполагает минимальные вертикальные колебания, а уменьшение вертикальных колебаний достигается повышением каденса.

Частота шагов или каденс (cadence). Как понятно из названия показателя, он демонстрирует количество шагов за минуту. Достаточно важный параметр, оценивающий экономичность бега. Чем быстрее вы бежите, тем выше каденс. Считается, что частота около 180 шагов в минуту является оптимальной для эффективного и экономичного бега.

Пульсовые зоны (heart rate zones). Зная максимальный пульс, различные модели беговых часов могут разбивать вашу тренировку по пульсовым зонам, показывая, сколько времени в ходе тренировки вы провели в той или иной зоне.

У разных производителей эти зоны обозначены по-своему, но их можно поделить на следующие типы:

  • восстановительная зона (60% от максимального ЧСС),
  • зона для тренировки выносливости (65%-70% от максимального ЧСС),
  • зона тренировки аэробной емкости (75-82% от максимальной ЧСС),
  • зона ПАНО (82-89% от максимального ЧСС),
  • зона максимальной аэробной нагрузки (89-94% от максимального ЧСС).

Знание своих пульсовых зон поможет вам получить максимум от каждой тренировки. О тренировках по пульсу мы подробно расскажем в следующей статье рубрики.


Помимо продвинутых беговых характеристик современные пульсометры могут измерять и отслеживать еще несколько интересных показателей:

EPOC (excess post-exercise oxygen consumption). Показатель потребления кислорода после тренировки демонстрирует, насколько изменился ваш метаболизм после пробежки. Мы все знаем, что бег приводит к сжиганию калорий, но даже после того, как тренировка закончилась, калории продолжают сгорать. Безусловно, для их восполнения нужно качественно восстановиться.

Наблюдение за показателем EPOC поможет вам понять, какие тренировки наиболее энергетически затратные, а также улучшить процесс восстановления.

Подсчитанное потребление кислорода (est. VO2). Показатель текущего потребления кислорода, рассчитанный на основании максимального потребления кислорода (VO2max) и максимальной ЧСС.

Максимальное потребление кислорода (VO2max). Показатель отражает способность вашего организма потреблять кислород. Это важно, поскольку при повышении этого показателя ваше тело может лучше и быстрее утилизировать доставляемый к работающим мышцам кислород.

Значение максимального потребления кислорода (МПК) увеличивается при повышении тренированности. Это один из самых важных беговых показателей, напрямую связанный с экономичностью бега. Как и в случае с определением максимальной ЧСС, наилучшим способом определения МПК является тестирование в лаборатории, но ряд производителей пульсометров использует алгоритмы расчета МПК приемлемой точности. Тренировки помогают улучшить значения этого показателя.

Беговая производительность (running performance). Показатель, использующий VO2max (глобальный стандарт аэробной тренированности и выносливости) для отслеживания прогресса в тренировках.

Пиковый тренировочный эффект (peak training effect, PTE). Показывает влияние тренировочной сессии на общую выносливость и аэробную производительность. Чем вы тренированнее, тем тяжелее вы должны тренироваться для того, чтобы достичь более высоких цифр PTE.

Вместо вывода

При интенсивном использовании пульсометр может быть великолепным помощником для бегуна. Крайне неверно считать пульсометр дорогой игрушкой, который совсем необязателен для «серьезных» спортсменов. Определитесь с целями на сезон, а после начните выстраивать тренировочный план.

Помните, что измерение и контроль ЧСС во время тренировок — надежный способ улучшить результаты и избежать перетренированности.

Для тех, кто только начинает свой беговой путь, можно порекомендовать сначала наблюдать за пульсом в ходе лёгких пробежек, и уже затем переходить к какому-либо тренировочному плану. Данные, полученные с помощью пульсометра, помогут понять, как ваш организм реагирует на нагрузку.

Тем не менее, не нужно становиться заложником цифр и гаджетов. Учитесь слушать свой организм, оценивайте ощущения от каждой тренировки, ну а цифры станут важным дополнительным источником информации.

Автор статьи: Евгений Суборов


Зачем нужно измерять пульс ?

Сейчас в большинстве спортивных гаджетов есть встроенная функция подсчета пульса. Взгляните, например, на бегунов. У многих под грудью или на руке закреплен датчик, который измеряет частоту сердечных сокращений. Но так ли важен этот показатель и нужно ли его измерять.

Нормальный пульс в течение дня

Понятие «нормальный» для пульса очень растяжимо. Этот показатель зависит от возраста, уровня физической подготовки и других показателей. В среднем нормальным считается пульс в промежутке 60-100 ударов в минуту, где 100 – максимально допустимый порог, желательно, чтобы пульс не превышал отметку в 80 ударов. Разумеется, чем ниже пульс, тем лучше. У спортсменов в отличной физической форме пульс в спокойном состоянии может быть около 40-50 ударов в минуту.

В течение дня наш пульс постоянно меняется. Он может резко подскочить просто от того, что вы изменили свое положение с лежачего на сидячее. Поэтому постоянно мерить пульс в течение дня смысла нет, эти цифры не дадут вам никакой информации. Однако если вы хотите узнать свой «стандартный» пульс, сделайте это сразу после пробуждения, до того как встанете с кровати. Так вы узнаете пульс в состоянии полного физического и эмоционального покоя.

Исключение составляют люди с заболеваниями сердца и сосудов. Им важно регулярно замерять ЧСС в течение дня, это одна из их медицинских процедур.

Определяем свой максимальный сердечный пульс

Нам нужно разобрать с таким показателем, как ваш личный максимальный пульс. Его можно рассчитать по формуле и на практике.

Формула: 220-Х=максимальный ЧСС человека. Х – ваш возраст.

Теперь определим этот показатель на практике. Засеките на секундомере 3 минуты. В течение этого времени выполняйте максимальное количество активных упражнений – выпрыгивания, бег с ускорением и т. д. Работайте без остановки. После этого измерьте пульс. Желательно, чтобы он совпал с тем показателем, что вы высчитывали по формуле. Запомните свой максимальный пульс, он понадобится вам на тренировках.

Пульс во время тренировок

Во время тренировок мы может достигать определенных зон. Работа в каждой из них позволяет добиться разного эффекта. Давайте познакомимся с этими зонами поближе:

  • 55-65% от максимальной ЧСС. В этой зоне происходит тренировка сердца и дыхательной системы. Такая зона идеально подходит для разминки перед основной тренировкой. Если вся тренировка проходит на таком уровне, то она должна быть более длительная.
  • 65-75% от максимальной ЧСС. В этой зоне происходит сжигание жиров. Оптимальный пульс для похудения, подходит людям с нормальным здоровьем. Если вы занимаетесь спортом после длительного перерыва, тренируйтесь некоторое время, не выходя из данной зоны.
  • 75-80% от максимальной ЧСС. Зона повышенной выносливости. Она подходит людям, которые готовятся к соревнованиям. Также это зона разминки у профессиональных атлетов.
  • 80-90% от максимальной ЧСС. В этой зоне начинается активное наращивание мышечной массы, прокачка мышц. Интенсивность нагрузки – высокая. Такая зона подходит для профессиональных спортсменов или для любителей, которые уже давно занимаются спортом.
  • 90-95% от максимальной ЧСС. Максимальная нагрузка. Зона подходит только для опытных спортсменов. Тренировка с таким пульсом может существенно навредить неподготовленному человеку.
  • 95-100% от максимальной ЧСС. Перегрузка. Тренировка в этой зоне навредит любому спортсмену.

Если вы хотите получить от ваших тренировок максимум пользы, обязательно замеряйте пульс. И помните, тренировка сердечной мышцы не менее важна, чем тренировка бицепсов или квадрицепсов.

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *