Степень -1 | Алгебра
Как возвести число в степень -1?
По определению степени с отрицательным показателем,
Например,
Число в минус первой степени и данное число являются взаимно обратными числами.
Чтоьы возвести обыкновенную дробь в степень -1, нужно ее числитель и знаменатель поменять местами («перевернуть»):
Например,
Чтобы возвести в степень минус 1 смешанное число, его предварительно нужно перевести в неправильную дробь. Например,
Чтобы возвести в минус первую степень десятичную дробь, её сначала лучше перевести в обыкновенную:
Число в первой и нулевой степени
Степень – это краткая запись произведения одинаковых сомножителей.
Пример:
7 · 7 · 7 · 7 = 7
4В записи 74 число 7 – это основание степени, то есть число, повторяющееся сомножителем, а число 4 – показатель степени, то есть число, показывающее количество одинаковых сомножителей.
Первая степень числа
Любое число в первой степени равно самому себе, так как показатель степени 1 указывает что число берётся сомножителем всего один раз, то есть оно ни на что не умножается,а просто остаётся без изменений.
Примеры:
71 = 7, 1001 = 100, -251 = -25
Нулевая степень числа
Любое число в нулевой степени (за исключением 0) равно 1:
70 = 1, 1000
= 1, -25
0 = 1
Чтобы разобраться почему число в нулевой степени равно 1, надо вспомнить правило деления степеней с одинаковыми основаниями:
При делении степеней с одинаковыми основаниями из показателя степени делимого вычитают показатель степени делителя.
Следовательно, если разделить одинаковые степени с одинаковыми основаниями, то в результате получится основание в нулевой степени:
a3 : a3 = a3-3 = a0
Так как два одинаковых числа, взятых в одной и той же степени, равны, по сути, они являются одним и тем же числом, то при их делении в частном получается единица. Значит:
a3 : a3 = 1
Следовательно, любое число в нулевой степени равно единице. Это можно легко доказать, проведя проверку деления умножением, умножив частное на делитель:
a0 · a3 = a0+3 = a3 или 1 · a3 = a3
Калькулятор степеней — возвести в степень онлайн
Калькулятор помогает быстро возвести число в степень онлайн. Основанием степени могут быть любые числа (как целые, так и вещественные). Показатель степени также может быть целым или вещественным, и также как положительным, так и отрицательным. Следует помнить, что для отрицательных чисел возведение в нецелую степень не определено и потому калькулятор сообщит об ошибке в случае, если вы всё же попытаетесь это выполнить.
Что такое натуральная степень числа?
Число p
называют n
-ой степенью числа a
, если p
равно числу a
, умноженному само на себя n
раз: p = an = a·...·a
n
— называется показателем степени, а число a
— основанием степени.
Как возвести число в натуральную степень?
Чтобы понять, как возводить различные числа в натуральные степени, рассмотрим несколько примеров:
Пример 1. Возвести число три в четвёртую степень. То есть необходимо вычислить 3 4
Решение: как было сказано выше, 34
= 3·3·3·3
= 81
.
Ответ: 34 = 81
.
Пример 2. Возвести число пять в пятую степень. То есть необходимо вычислить 55
Решение: аналогично, 55
= 5·5·5·5·5
= 3125
.
Ответ: 55 = 3125
.
Таким образом, чтобы возвести число в натуральную степень, достаточно всего лишь умножить его само на себя n
раз.
Что такое отрицательная степень числа?
Отрицательная степень
-n
числа
a
— это единица, поделённая на
a
в степени
n
: a
-n = .
При этом отрицательная степень существует только для отличных от нуля чисел, так как в противном случае происходило бы деление на ноль.
Как возвести число в целую отрицательную степень?
Чтобы возвести отличное от нуля число в отрицательную степень, нужно вычислить значение этого числа в той же положительной степени и разделить единицу на полученный результат.
Пример 1. Возвести число два в минус четвёртую степень. То есть необходимо вычислить 2-4
Решение: как было сказано выше,
2-4 = = = 0.0625
.
Ответ: 2-4 = 0.0625
.
определения, обозначение, примеры, степень с отрицательным показателем
В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.
Степени с натуральными показателями: понятие квадрата и куба числа
Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a), а в качестве показателя – натуральное (обозначим буквой n).
Определение 1
Степень числа a с натуральным показателем n – это произведение n-ного числа множителей, каждый из которых равен числу а. Записывается степень так:
an, а в виде формулы ее состав можно представить следующим образом:
Например, если показатель степени равен 1, а основание – a, то первая степень числа a записывается как a1. Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a1=a.
В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8·8·8·8 можно сократить до
84. Примерно так же произведение помогает нам избежать записи большого числа слагаемых (8+8+8+8=8·4); мы это уже разбирали в статье, посвященной умножению натуральных чисел.
Как же верно прочесть запись степени? Общепринятый вариант – «a в степени n». Или можно сказать «n-ная степень a» либо «an-ной степени». Если, скажем, в примере встретилась запись 812, мы можем пр
Возведение в степень: правила, примеры, дробная степень
Мы разобрались, что вообще из себя представляет степень числа. Теперь нам надо понять, как правильно выполнять ее вычисление, т.е. возводить числа в степень. В этом материале мы разберем основные правила вычисления степени в случае целого, натурального, дробного, рационального и иррационального показателя. Все определения будут проиллюстрированы примерами.
Понятие возведения в степень
Начнем с формулирования базовых определений.
Определение 1
Возведение в степень — это вычисление значения степени некоторого числа.
То есть слова «вычисление значение степени» и «возведение в степень» означают одно и то же. Так, если в задаче стоит «Возведите число 0,5 в пятую степень», это следует понимать как «вычислите значение степени (0,5)5.
Теперь приведем основные правила, которым нужно придерживаться при таких вычислениях.
Как возвести число в натуральную степень
Вспомним, что такое степень числа с натуральным показателем. Для степени с основанием a и показателем n это будет произведение n-ного числа множителей, каждый из которых равен a. Это можно записать так:
Чтобы вычислить значение степени, нужно выполнить действие умножения, то есть перемножить основания степени указанное число раз. На умении быстро умножать и основано само понятие степени с натуральным показателем. Приведем примеры.
Пример 1
Условие: возведите -2 в степень 4.
Решение
Используя определение выше, запишем: (−2)4=(−2)·(−2)·(−2)·(−2). Далее нам нужно просто выполнить указанные действия и получить 16.
Возьмем пример посложнее.
Пример 2
Вычислите значение 3272
Решение
Данную запись можно переписать в виде 327·327. Ранее мы рассматривали, как правильно умножать смешанные числа, упомянутые в условии.
Выполним эти действия и получим ответ: 327
Таблица степеней
Таблица степеней чисел с 1 до 10. Калькулятор степеней онлайн. Интерактивная таблица и изображения таблицы степеней в высоком качестве.
Калькулятор степеней
Вычислить
Очистить
\begin{align}
\end{align}
С помощью данного калькулятора вы сможете в режиме онлайн вычислить степень любого натурального числа. Введите число, степень и нажмите кнопку «вычислить».
Таблица степеней от 1 до 10
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|
1n | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2n | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 |
3n | 3 | 9 | 27 | 81 | 243 | 729 | 2187 | 6561 | 19683 | 59049 |
4n | 4 | 16 | 64 | 256 | 1024 | 4096 | 16384 | 65536 | 262144 | 1048576 |
5n | 5 | 25 | 125 | 625 | 3125 | 15625 | 78125 | 390625 | 1953125 | 9765625 |
6n | 6 | 36 | 216 | 1296 | 7776 | 46656 | 279936 | 1679616 | 10077696 | 60466176 |
7n | 7 | 49 | 343 | 2401 | 16807 | 117649 | 823543 | 5764801 | 40353607 | 282475249 |
8n | 8 | 64 | 512 | 4096 | 32768 | 262144 | 2097152 | 16777216 | 134217728 | 1073741824 |
9n | 9 | 81 | 729 | 6561 | 59049 | 531441 | 4782969 | 43046721 | 387420489 | 3486784401 |
10n | 10 | 100 | 1000 | 10000 | 100000 | 1000000 | 10000000 | 100000000 | 1000000000 | 10000000000 |
Таблица степеней от 1 до 10
|
11=1 12=1 13=1 14=1 15=1 16=1 17=1 18=1 19=1 110=1 | 21=2 22=4 23=8 24=16 25=32 26=64 27=128 28=256 29=512 210=1024 | 31=3 32=9 33=27 34=81 35=243 36=729 37=2187 38=6561 39=19683 310=59049 | 41=4 42=16 43=64 44=256 45=1024 46=4096 47=16384 48=65536 49=262144 410=1048576 | 51=5 52=25 53=125 54=625 55=3125 56=15625 57=78125 58=390625 59=1953125 510=9765625 |
61=6 62=36 63=216 64=1296 65=7776 66=46656 67=279936 68=1679616 69=10077696 610=60466176 | 71=7 72=49 73=343 74=2401 75=16807 76=117649 77=823543 78=5764801 79=40353607 710=282475249 | 81=8 82=64 83=512 84=4096 85=32768 86=262144 87=2097152 88=16777216 89=134217728 810=1073741824 | 91=9 92=81 93=729 94=6561 95=59049 96=531441 97=4782969 98=43046721 99=387420489 910=3486784401 | 101=10 102=100 103=1000 104=10000 105=100000 106=1000000 107=10000000 108=100000000 109=1000000000 1010=10000000000 |
Теория
Степень числа – это сокращенная запись операции многократного умножения числа самого на себя. Само число в данном случае называется — основанием степени, а количество операций умножения — показателем степени.
an = a×a … ×a
запись читается: «a» в степени «n».
«a» — основание степени
«n» — показатель степени
Пример:
46 = 4 × 4 × 4 × 4 × 4 × 4 = 4096
Данное выражение читается: 4 в степени 6 или шестая степень числа четыре или возвести число четыре в шестую степень.
Скачать таблицу степеней
- Нажмите на картинку чтобы посмотреть в увеличенном виде.
- Нажмите на надпись «скачать», чтобы сохранить картинку на свой компьютер. Изображение будет с высоким разрешением и в хорошем качестве.
Число в степени 1 | Алгебра
Чему равно число в степени 1? Любое ли число можно возвести в первую степень?
Определение.
Для любого a
Таким образом, по определению, в первую степень можно возвести любое число.
Каким бы ни было это число — целым, дробным, положительным, отрицательным, рациональным или иррациональным — при возведение в степень 1 в результате получаем то же самое число.
Другими словами, число в степени 1 равно самому числу:
3 в степени 1 равно 3;
5 в степени 1 равно 5 и т.д.
Примеры.
В алгебре степень 1 обычно не пишется. Но при действиях со степенями — учитывается.
Например,