1 степени – А как найти число в минусовой степени??? Например 8 в степени -1 ?..Люди Помогите, а то инфу сделать не могу!!!

Степень -1 | Алгебра

Как возвести число в степень -1?

По определению степени с отрицательным показателем,

   

Например,

   

   

   

   

Число в минус первой степени и данное число являются взаимно обратными числами.

Чтоьы возвести обыкновенную дробь в степень -1, нужно ее числитель и знаменатель поменять местами («перевернуть»):

   

Например,

   

   

   

   

Чтобы возвести в степень минус 1 смешанное число, его предварительно нужно перевести в неправильную дробь. Например,

   

   

   

   

Чтобы возвести в минус первую степень десятичную дробь, её сначала лучше перевести в обыкновенную:

   

   

   

   

Число в первой и нулевой степени

Степень – это краткая запись произведения одинаковых сомножителей.

Пример:

7 · 7 · 7 · 7 = 74

В записи 74 число 7 – это основание степени, то есть число, повторяющееся сомножителем, а число 4 – показатель степени, то есть число, показывающее количество одинаковых сомножителей.

Первая степень числа

Любое число в первой степени равно самому себе, так как показатель степени 1 указывает что число берётся сомножителем всего один раз, то есть оно ни на что не умножается,а просто остаётся без изменений.

Примеры:

71 = 7,     1001 = 100,     -251 = -25

Нулевая степень числа

Любое число в нулевой степени (за исключением 0) равно 1:

70 = 1,     1000

= 1,     -250 = 1

Чтобы разобраться почему число в нулевой степени равно 1, надо вспомнить правило деления степеней с одинаковыми основаниями:

При делении степеней с одинаковыми основаниями из показателя степени делимого вычитают показатель степени делителя.

Следовательно, если разделить одинаковые степени с одинаковыми основаниями, то в результате получится основание в нулевой степени:

a3 : a3 = a3-3 = a0

Так как два одинаковых числа, взятых в одной и той же степени, равны, по сути, они являются одним и тем же числом, то при их делении в частном получается единица. Значит:

a3 : a3 = 1

Следовательно, любое число в нулевой степени равно единице. Это можно легко доказать, проведя проверку деления умножением, умножив частное на делитель:

a0 · a3 = a0+3 = a3     или     1 · a3 = a3

Калькулятор степеней — возвести в степень онлайн

Калькулятор помогает быстро возвести число в степень онлайн. Основанием степени могут быть любые числа (как целые, так и вещественные). Показатель степени также может быть целым или вещественным, и также как положительным, так и отрицательным. Следует помнить, что для отрицательных чисел возведение в нецелую степень не определено и потому калькулятор сообщит об ошибке в случае, если вы всё же попытаетесь это выполнить.

Что такое натуральная степень числа?

Число p называют n-ой степенью числа a, если p равно числу a, умноженному само на себя n раз: p = an = a·...·a
n — называется показателем степени, а число aоснованием степени.

Как возвести число в натуральную степень?

Чтобы понять, как возводить различные числа в натуральные степени, рассмотрим несколько примеров:

Пример 1. Возвести число три в четвёртую степень. То есть необходимо вычислить 3

4
Решение: как было сказано выше, 34 = 3·3·3·3 = 81.
Ответ: 34 = 81.

Пример 2. Возвести число пять в пятую степень. То есть необходимо вычислить 55
Решение: аналогично, 55 = 5·5·5·5·5 = 3125.
Ответ: 55 = 3125.

Таким образом, чтобы возвести число в натуральную степень, достаточно всего лишь умножить его само на себя n раз.

Что такое отрицательная степень числа?

Отрицательная степень -n числа a — это единица, поделённая на
a
в степени n: a-n = .

При этом отрицательная степень существует только для отличных от нуля чисел, так как в противном случае происходило бы деление на ноль.

Как возвести число в целую отрицательную степень?

Чтобы возвести отличное от нуля число в отрицательную степень, нужно вычислить значение этого числа в той же положительной степени и разделить единицу на полученный результат.

Пример 1. Возвести число два в минус четвёртую степень. То есть необходимо вычислить 2-4

Решение: как было сказано выше, 2-4 = = = 0.0625.

Ответ: 2-4 = 0.0625.

определения, обозначение, примеры, степень с отрицательным показателем

В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.

Степени с натуральными показателями: понятие квадрата и куба числа

Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a), а в качестве показателя – натуральное (обозначим буквой n).

Определение 1

Степень числа a с натуральным показателем n – это произведение n-ного числа множителей, каждый из которых равен числу а. Записывается степень так:

an, а в виде формулы ее состав можно представить следующим образом: Степени с натуральными показателями: понятие квадрата и куба числа

Например, если показатель степени равен 1, а основание – a, то первая степень числа a записывается как a1. Учитывая, что a – это значение множителя, а 1 – число множителей, мы можем сделать вывод, что a1=a.

В целом можно сказать, что степень – это удобная форма записи большого количества равных множителей. Так, запись вида 8·8·8·8 можно сократить до

84. Примерно так же произведение помогает нам избежать записи большого числа слагаемых (8+8+8+8=8·4); мы это уже разбирали в статье, посвященной умножению натуральных чисел.

Как же верно прочесть запись степени? Общепринятый вариант – «a в степени n».  Или можно сказать «n-ная степень a» либо «an-ной степени». Если, скажем, в примере встретилась запись 812, мы можем пр

Возведение в степень: правила, примеры, дробная степень

Мы разобрались, что вообще из себя представляет степень числа. Теперь нам надо понять, как правильно выполнять ее вычисление, т.е. возводить числа в степень. В этом материале мы разберем основные правила вычисления степени в случае целого, натурального, дробного, рационального и иррационального показателя. Все определения будут проиллюстрированы примерами.

Понятие возведения в степень

Начнем с формулирования базовых определений.

Определение 1

Возведение в степень — это вычисление значения степени некоторого числа.

То есть слова «вычисление значение степени» и «возведение в степень» означают одно и то же. Так, если в задаче стоит «Возведите число 0,5 в пятую степень», это следует понимать как «вычислите значение степени (0,5)5.

Теперь приведем основные правила, которым нужно придерживаться при таких вычислениях.

Как возвести число в натуральную степень

Вспомним, что такое степень числа с натуральным показателем. Для степени с основанием a и показателем n это будет произведение n-ного числа множителей, каждый из которых равен a. Это можно записать так:

Как возвести число в натуральную степень

Чтобы вычислить значение степени, нужно выполнить действие умножения, то есть перемножить основания степени указанное число раз. На умении быстро умножать и основано само понятие степени с натуральным показателем. Приведем примеры.

Пример 1

Условие: возведите -2 в степень 4.

Решение

Используя определение выше, запишем: (−2)4=(−2)·(−2)·(−2)·(−2). Далее нам нужно просто выполнить указанные действия и получить 16.

Возьмем пример посложнее.

Пример 2

Вычислите значение 3272

Решение

Данную запись можно переписать в виде 327·327. Ранее мы рассматривали, как правильно умножать смешанные числа, упомянутые в условии.

Выполним эти действия и получим ответ: 327

Таблица степеней

Таблица степеней чисел с 1 до 10. Калькулятор степеней онлайн. Интерактивная таблица и изображения таблицы степеней в высоком качестве.


Калькулятор степеней

Вычислить Очистить

\begin{align} \end{align}

С помощью данного калькулятора вы сможете в режиме онлайн вычислить степень любого натурального числа. Введите число, степень и нажмите кнопку «вычислить».




Таблица степеней от 1 до 10


n12345678910
1n1111111111
2n2481632641282565121024
3n392781243729218765611968359049
4n416642561024409616384655362621441048576
5n5251256253125156257812539062519531259765625
6n636216129677764665627993616796161007769660466176
7n749343240116807117649823543576480140353607282475249
8n8645124096327682621442097152167772161342177281073741824
9n9817296561590495314414782969430467213874204893486784401
10n10100100010000100000100000010000000100000000100000000010000000000



Таблица степеней от 1 до 10

11=1

12=1

13=1

14=1

15=1

16=1

17=1

18=1

19=1

110=1

21=2

22=4

23=8

24=16

25=32

26=64

27=128

28=256

29=512

210=1024

31=3

32=9

33=27

34=81

35=243

36=729

37=2187

38=6561

39=19683

310=59049

41=4

42=16

43=64

44=256

45=1024

46=4096

47=16384

48=65536

49=262144

410=1048576

51=5

52=25

53=125

54=625

55=3125

56=15625

57=78125

58=390625

59=1953125

510=9765625

61=6

62=36

63=216

64=1296

65=7776

66=46656

67=279936

68=1679616

69=10077696

610=60466176

71=7

72=49

73=343

74=2401

75=16807

76=117649

77=823543

78=5764801

79=40353607

710=282475249

81=8

82=64

83=512

84=4096

85=32768

86=262144

87=2097152

88=16777216

89=134217728

810=1073741824

91=9

92=81

93=729

94=6561

95=59049

96=531441

97=4782969

98=43046721

99=387420489

910=3486784401

101=10

102=100

103=1000

104=10000

105=100000

106=1000000

107=10000000

108=100000000

109=1000000000

1010=10000000000



Теория

Степень числа – это сокращенная запись операции многократного умножения числа самого на себя. Само число в данном случае называется — основанием степени, а количество операций умножения — показателем степени.

an = a×a … ×a

запись читается: «a» в степени «n».

«a» — основание степени

«n» — показатель степени

Пример:

46 = 4 × 4 × 4 × 4 × 4 × 4 = 4096

Данное выражение читается: 4 в степени 6 или шестая степень числа четыре или возвести число четыре в шестую степень.


Скачать таблицу степеней

  • Нажмите на картинку чтобы посмотреть в увеличенном виде.
  • Нажмите на надпись «скачать», чтобы сохранить картинку на свой компьютер. Изображение будет с высоким разрешением и в хорошем качестве.
Таблица степеней Таблица степеней

Число в степени 1 | Алгебра

Чему равно число в степени 1? Любое ли число можно возвести в первую степень?

Определение.

Для любого a

   

Таким образом, по определению, в первую степень можно возвести любое число.

Каким бы ни было это число — целым, дробным, положительным, отрицательным, рациональным или иррациональным — при возведение в степень 1 в результате получаем то же самое число.

Другими словами, число в степени 1 равно самому числу:

3 в степени 1 равно 3;

5 в степени 1 равно 5 и т.д.

Примеры.

   

   

   

   

   

   

   

   

   

В алгебре степень 1 обычно не пишется.  Но при действиях со степенями — учитывается.

Например,

   

   

   

Leave a Comment

Ваш адрес email не будет опубликован. Обязательные поля помечены *